Abstract

We report experimental studies on the Fabry-Perot (F-P) type polariton modes and their dynamics using a modified Young's double-slit interference technique. The technique was based on the angle-resolved micro-photoluminescence spectroscopy and optimized for nanostructure measurements. Using this technique, we directly revealed the parity of the F-P type polariton modes from the angle-dependent interference spectra. Moreover, clear features of mode competition were observed from the power dependence of the interference patterns. The observed competition behaviors can be well simulated by a five-level rate equation model.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electron–hole plasma induced band gap renormalization in ZnO microlaser cavities

Jun Dai, Chunxiang Xu, Toshihiro Nakamura, Yueyue Wang, Jitao Li, and Yi Lin
Opt. Express 22(23) 28831-28837 (2014)

Three-dimensional confinement of polaritons in ZnO microcylinder

Dan Xu, Wenhui Liu, Saifeng Zhang, Xuechu Shen, and Zhanghai Chen
Opt. Express 21(3) 3911-3916 (2013)

Reduction of lasing threshold by protecting gas and the structure dependent visual lasing mode of various CdS microstructures

Ya Li, Shuai Guo, Fangyin Zhao, An Li, Ke Chai, Liang Liang, and Ruibin Liu
Opt. Express 24(23) 26857-26866 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [Crossref] [PubMed]
  2. B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
    [Crossref] [PubMed]
  3. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
    [Crossref] [PubMed]
  4. W. Zhou, X. Zhang, Y. Zhang, C. Tian, and C. Xu, “Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes,” Opt. Express 25(25), 32142–32149 (2017).
    [Crossref] [PubMed]
  5. W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
    [Crossref]
  6. L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
    [Crossref] [PubMed]
  7. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
    [Crossref] [PubMed]
  8. D. Xu, W. Liu, S. Zhang, X. Shen, and Z. Chen, “Three-dimensional confinement of polaritons in ZnO microcylinder,” Opt. Express 21(3), 3911–3916 (2013).
    [Crossref] [PubMed]
  9. E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
    [Crossref]
  10. R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
    [Crossref]
  11. H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
    [Crossref] [PubMed]
  12. B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
    [Crossref]
  13. G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
    [Crossref]
  14. Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
    [Crossref]
  15. C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
    [Crossref] [PubMed]
  16. G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
    [Crossref] [PubMed]
  17. L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
    [Crossref] [PubMed]
  18. Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
    [Crossref]
  19. F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
    [Crossref]
  20. E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
    [Crossref] [PubMed]
  21. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
    [Crossref] [PubMed]
  22. R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
    [Crossref] [PubMed]
  23. W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
    [Crossref] [PubMed]

2017 (3)

W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

W. Zhou, X. Zhang, Y. Zhang, C. Tian, and C. Xu, “Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes,” Opt. Express 25(25), 32142–32149 (2017).
[Crossref] [PubMed]

2015 (2)

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

2014 (2)

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

2013 (2)

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

D. Xu, W. Liu, S. Zhang, X. Shen, and Z. Chen, “Three-dimensional confinement of polaritons in ZnO microcylinder,” Opt. Express 21(3), 3911–3916 (2013).
[Crossref] [PubMed]

2012 (4)

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

2011 (3)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

2010 (2)

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

2008 (1)

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

2007 (2)

H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
[Crossref] [PubMed]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

2006 (1)

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

2003 (1)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Agarwal, R.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Amo, A.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

Baas, A.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Bai, L.

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Balili, R.

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Baumberg, J. J.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

Berloff, N. G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

Biermann, K.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Bloch, J.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Bradley, R.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Byrnes, T.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Cerda-Méndez, E. A.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Chen, R.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Chen, Z.

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

D. Xu, W. Liu, S. Zhang, X. Shen, and Z. Chen, “Three-dimensional confinement of polaritons in ZnO microcylinder,” Opt. Express 21(3), 3911–3916 (2013).
[Crossref] [PubMed]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Cho, C. H.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Christmann, G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Daïf, O.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Deng, H.

H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
[Crossref] [PubMed]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Deveaud, B.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Dong, H.

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Ferrier, L.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Flayac, H.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

Fraser, M. D.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Fujisawa, T.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Galopin, E.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

Ganière, J.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Gao, T.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

Grousson, R.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Guda, K.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Guillet, T.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Hakuta, K.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

Hatzopoulos, Z.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

Hey, R.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
[Crossref] [PubMed]

Huang, Y.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Johne, R.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Kaitouni, R.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Kavokin, A. V.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Kim, N. Y.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Krizhanovskii, D. N.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Kumada, N.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Lai, C. W.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Lemaître, A.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Li, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Lieber, C. M.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Lin, Y.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Ling, B.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Ling, Y.

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

Liu, G.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Liu, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, W.

Lu, J.

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

Lugan, P.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Malpuech, G.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Marsault, F.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

Morier-Genoud, F.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Nayak, K. P.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

Nelsen, B.

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Nelson, K.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

Nguyen, H.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

Nguyen, H. S.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

Paraiso, T.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Pfeiffer, L.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Piccione, B.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Ploog, K. H.

H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
[Crossref] [PubMed]

Recher, P.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Ren, Q.

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Richard, M.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Roumpos, G.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

Sadgrove, M.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

Sagnes, I.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Santos, P. V.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Sanvitto, D.

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Sarkar, D.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Savona, V.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Savvidis, P. G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

Senellart, P.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Shen, X.

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

D. Xu, W. Liu, S. Zhang, X. Shen, and Z. Chen, “Three-dimensional confinement of polaritons in ZnO microcylinder,” Opt. Express 21(3), 3911–3916 (2013).
[Crossref] [PubMed]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Skolnick, M. S.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Snoke, D.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Solnyshkov, D.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

Solnyshkov, D. D.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

Solomon, G. S.

H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
[Crossref] [PubMed]

Staehli, J.

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Steger, M.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Sturm, C.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

Sun, H. D.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Sun, L.

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Sun, X. W.

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

Tanese, D.

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

Tian, C.

W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

W. Zhou, X. Zhang, Y. Zhang, C. Tian, and C. Xu, “Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes,” Opt. Express 25(25), 32142–32149 (2017).
[Crossref] [PubMed]

Tosi, G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

Tsotsis, P.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

Utsunomiya, S.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

van Vugt, L. K.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Wertz, E.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

West, K.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Wouters, M.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

Xie, W.

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

Xiong, H.

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Xu, C.

W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

W. Zhou, X. Zhang, Y. Zhang, C. Tian, and C. Xu, “Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes,” Opt. Express 25(25), 32142–32149 (2017).
[Crossref] [PubMed]

Xu, D.

Yalla, R.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

Yamamoto, Y.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
[Crossref] [PubMed]

Yoon, Y.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

Yu, K.

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Zhang, S.

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

D. Xu, W. Liu, S. Zhang, X. Shen, and Z. Chen, “Three-dimensional confinement of polaritons in ZnO microcylinder,” Opt. Express 21(3), 3911–3916 (2013).
[Crossref] [PubMed]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

Zhang, X.

W. Zhou, X. Zhang, Y. Zhang, C. Tian, and C. Xu, “Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes,” Opt. Express 25(25), 32142–32149 (2017).
[Crossref] [PubMed]

W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Zhang, Y.

W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

W. Zhou, X. Zhang, Y. Zhang, C. Tian, and C. Xu, “Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes,” Opt. Express 25(25), 32142–32149 (2017).
[Crossref] [PubMed]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, X. Zhang, Y. Zhang, C. Tian, and C. Xu, “Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes,” Opt. Express 25(25), 32142–32149 (2017).
[Crossref] [PubMed]

W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Zhu, Z. Q.

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Chen, B. Ling, X. W. Sun, and H. D. Sun, “Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks,” Adv. Mater. 23(19), 2199–2204 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

Y. Ling, W. Xie, L. Sun, H. Dong, S. Zhang, X. Shen, and Z. Chen, “Room-temperature polariton waveguide effect in a ZnO microwire,” Appl. Phys. Express 8(3), 031102 (2015).
[Crossref]

Appl. Phys. Lett. (2)

F. Marsault, H. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, and J. Bloch, “Realization of an all optical exciton-polariton router,” Appl. Phys. Lett. 107(20), 201115 (2015).
[Crossref]

W. Zhou, Y. Zhang, X. Zhang, C. Tian, and C. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Nat. Commun. (2)

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat. Commun. 5(1), 3278 (2014).
[Crossref] [PubMed]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Geometrically locked vortex lattices in semiconductor quantum fluids,” Nat. Commun. 3(1), 1243 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically Pumped Waveguide Lasing from ZnO Nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Nat. Phys. (3)

E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6(11), 860–864 (2010).
[Crossref]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8(3), 190–194 (2012).
[Crossref]

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. Pfeiffer, K. West, D. Snoke, and K. Nelson, “Direct measurement of polariton–polariton interaction strength,” Nat. Phys. 13(9), 870–875 (2017).
[Crossref]

Nature (2)

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature 450(7169), 529–532 (2007).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

R. Kaitouni, O. Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J. Ganière, J. Staehli, V. Savona, and B. Deveaud, “Engineering the spatial confinement of exciton polaritons in semiconductors,” Phys. Rev. B 74(15), 155311 (2006).
[Crossref]

Phys. Rev. Lett. (6)

H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99(12), 126403 (2007).
[Crossref] [PubMed]

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[Crossref] [PubMed]

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaître, G. Malpuech, and J. Bloch, “Interactions in Confined Polariton Condensates,” Phys. Rev. Lett. 106(12), 126401 (2011).
[Crossref] [PubMed]

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton Condensation in Dynamic Acoustic Lattices,” Phys. Rev. Lett. 105(11), 116402 (2010).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, J. Lu, X. Shen, and Z. Chen, “Room-temperature Polariton Parametric Scattering Driven by a One-dimensional Polariton Condensate,” Phys. Rev. Lett. 108(16), 166401 (2012).
[Crossref] [PubMed]

Phys. Rev. X (1)

B. Nelsen, G. Liu, M. Steger, D. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless Flow and Sharp Threshold of a Polariton Condensate with Long Lifetime,” Phys. Rev. X 3(4), 041015 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup of a typical angle-resolved micro-PL system. Light emissions from the two edges of a ZnO microrod (or any two spots of a nanostructure) are met and interfered at the entrance slit of a spectrometer. A modified Young’s double-slit interference measurement can be realized by performing angle-resolved measurements. Light emission from the excitation area and other unwanted area is blocked by placing a mask in the position of the real-space image. (b) Optical image of a typical ZnO microrod excited at its center. PL emissions from the excitation area and the two edges are clearly visible. Emissions from the two edges (dashed circles) are guided into spectrometer. (c) SEM image of a typical ZnO microrod showing its hexagonal cross-section.
Fig. 2
Fig. 2 (a) Angle-resolved PL image of a ZnO microrod with radius a ≈0.8 μm and length exceeding 100 μm under weak pumping using a 355 nm pulsed laser. The white dotted curves are the fitted polariton dispersions using the coupled oscillator model. (b) Integrated PL intensity of the microrod as a function of the normalized pumping power. Pth denotes the threshold power of lasing.
Fig. 3
Fig. 3 Interference patterns for light emission from the two ends of a ZnO microrod with radius a ≈0.8 μm and length L ≈5.8 μm. (a) Pumping power P = 0.7 Pth, with Pth being threshold power of lasing. (b) P = 1.0 Pth. (c) P = 1.32 Pth. (d) P = 2.3 Pth. (e) Real-space PL image of the ZnO microrod under pumping power of P = 2.3 Pth. (f) Simulated interference patterns using a microrod with the same parameter as the one measured. The white solid curve in (d) is the corresponding spectra for the interference patterns.
Fig. 4
Fig. 4 (a) Energies of the lasing modes as a function of their tentative mode order for three microrods with length L ≈5.8 μm, 6.8 μm and 8.6 μm, respectively. Corresponding diameters of these microrods are D ≈1.6 μm, 1.8 μm and 1.7 μm, respectively. The dash-dotted lines are linear fit to the data. (b) Interference spectra of the four observed lasing modes shown in Fig. 2(d). The Arabic numbers given in each panel denote the mode order in F-P microcavities. Together shown in each panel are the parities of the F-P modes.
Fig. 5
Fig. 5 (a) Schematic of the five-level rate equation model. |Reservoir> refers to the optically injected excitonic reservoir. |i > (i = I, II, III, IV) denotes the four experimentally observed lasing modes. Γi: radiative decay rate of state i. The vertical arrows denote the possible relaxation channels. (b) The integrated PL intensities of the four observed lasing modes as a function of the normalized pumping power. (c) Calculated PL intensities as a function of pumping power for the four lasing modes. n5: carrier population in the exciton reservoir.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n 5 (t) dt = Γ 5 n 5 Γ 51 n 5 ( n 1 +1) Γ 52 n 5 ( n 2 +1) Γ 53 n 5 ( n 3 +1) Γ 54 n 5 ( n 4 +1)
d n 4 (t) dt = Γ 4 n 4 + Γ 54 n 5 ( n 4 +1) Γ 41 n 4 ( n 1 +1) Γ 42 n 4 ( n 2 +1) Γ 43 n 4 ( n 3 +1)
d n 3 (t) dt = Γ 3 n 3 + Γ 53 n 5 ( n 3 +1)+ Γ 43 n 4 ( n 3 +1) Γ 31 n 3 ( n 1 +1) Γ 32 n 3 ( n 2 +1)
d n 2 (t) dt = Γ 2 n 2 + Γ 52 n 5 ( n 2 +1)+ Γ 42 n 4 ( n 2 +1)+ Γ 32 n 3 ( n 2 +1) Γ 21 n 2 ( n 1 +1)
d n 1 (t) dt = Γ 1 n 1 + Γ 51 n 5 ( n 1 +1)+ Γ 41 n 4 ( n 1 +1)+ Γ 31 n 3 ( n 1 +1)+ Γ 21 n 2 ( n 1 +1)

Metrics