Abstract

Gordon and Voss in their comment challenge the recently published paper [Opt. Express 25, 27086 (2017)] on the unity factor of radiance transmittance of the assumed hypothetical case (i.e., for the albedo equal to 1) and question the dependence of particulate contribution to the refractive index of water. Here, we provide answers to their comments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Wyatt, Radiometric Calibration: Theory and Methods (Academic Press, 1978).
  2. C. D. Mobley, “Radiative Transfer: Across the surface,” in Light and Water: Radiative Transfer in the Natural Waters (Academic Press, 1994), pp. 159–161.
  3. H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [Crossref]
  4. P. J. Dev and P. Shanmugam, “New theoretical formulation for the determination of radiance transmittance at the water-air interface,” Opt. Express 25(22), 27086–27103 (2017).
    [Crossref] [PubMed]

2017 (1)

1988 (1)

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Baker, K. S.

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, J. W.

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Brown, O. B.

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Clark, D. K.

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Dev, P. J.

Evans, R. H.

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Gordon, H. R.

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Shanmugam, P.

Smith, R. C.

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

J. Geophys. Res. (1)

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[Crossref]

Opt. Express (1)

Other (2)

C. L. Wyatt, Radiometric Calibration: Theory and Methods (Academic Press, 1978).

C. D. Mobley, “Radiative Transfer: Across the surface,” in Light and Water: Radiative Transfer in the Natural Waters (Academic Press, 1994), pp. 159–161.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L u + ( θ a , ϕ a )= L u ( θ w ,   ϕ w ) n w 2 t f ( θ w , φ w ).
L u = L u0 + L u1 + L u2 += L u0 + r ¯ R L u0 + ( r ¯ R ) 2 L u0 += L u0 1 r ¯ R .
L u + = t f n w 2 L u0 1 r ¯ R = t f n w 2 [ 1 1 r ¯ R ] L u0 .
L u + = t f n w 2 [ 1 1 r ¯ ] L u0 =0.541×[ 1 10.475 ] L u0 =1.03× L u0 .
E u + = Ω d L u + ( θ a , ϕ a )cos θ a d Ω a =π L u + . 
E u = Ω d L u ( θ w , ϕ w )cos θ w d Ω w =π L u .
L u + = t f n w 2 [ 1 μ u ω r f 2 + μ u ω n w 2 t f ]× L u0 = t f n w 2 [ 11 r f 2 + n w 2 t f ]× L u0 =1.00× L u0 .
L u z 0 = L u z 1 e K Lu z 1 .
τ w,a = (1 ρ w,a ) n w 2 [ ( 1 μ u ω )+ μ u ω n w 2 (1 ρ w,a ) ].
L w ( air,λ )= ( 1 ρ w,a ) n w 2 [ ( 1 μ u ω )+ μ u ω n w 2 ( 1 ρ w,a ) ] L u ( 0 ,λ).
R rs ( 0 + ,λ )= (1 ρ a,w )( 1 ρ w,a ) n w 2 [ ( 1 μ u ω )+ μ u ω n w 2 ( 1 ρ w,a ) ] r rs ( 0 ,λ).

Metrics