Abstract

High-power tunable pulsed and CW mid-infrared fiber gas laser sources in acetylene-filled hollow-core fibers, to the best of our knowledge, are demonstrated for the first time. By precisely tuning the wavelength of the pump source, an amplified tunable 1.5 μm diode laser, to match different absorption lines of acetylene, the laser output is step-tunable in the range of 3.09~3.21 μm with a maximum pulse average power of ~0.3 W (~0.6 μJ pulse energy) and a maximum CW power of ~0.77 W, making this system the first watt-level tunable fiber gas laser operating at mid-infrared range. The output spectral and power characteristics are systemically studied, and the explanations about the change of the ratio of the P over R branch emission lines with the pump power and the gas pressure are given, which is useful for the investigations of mid-infrared fiber gas lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber

Zefeng Wang, Walter Belardi, Fei Yu, William J. Wadsworth, and Jonathan C. Knight
Opt. Express 22(18) 21872-21878 (2014)

Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR

Neda Dadashzadeh, Manasadevi P. Thirugnanasambandam, H. W. Kushan Weerasinghe, Benoit Debord, Matthieu Chafer, Frederic Gerome, Fetah Benabid, Brian R. Washburn, and Kristan L. Corwin
Opt. Express 25(12) 13351-13358 (2017)

0.83 W, single-pass, 1.54 μm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure

Zhixian Li, Wei Huang, Yulong Cui, Zefeng Wang, and Wuming Wu
Opt. Express 26(10) 12522-12529 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
    [Crossref]
  3. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  4. Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
    [Crossref]
  5. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  6. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  7. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
    [Crossref] [PubMed]
  8. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
    [Crossref]
  9. A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
    [Crossref]
  10. A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40(4), 605–608 (2015).
    [Crossref] [PubMed]
  11. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
    [Crossref] [PubMed]
  12. M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
    [Crossref]
  13. Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
    [Crossref]
  14. M. Xu, F. Yu, and J. Knight, “Mid-infrared 1 W hollow-core fiber gas laser source,” Opt. Lett. 42(20), 4055–4058 (2017).
    [Crossref] [PubMed]
  15. N. Dadashzadeh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Express 25(12), 13351–13358 (2017).
    [Crossref] [PubMed]
  16. A. M. Jones, “Realizing a mid-infrared optically pumped molecular gas laser inside hollow-core photonic crystal fiber,” Ph.D. thesis, Kansas State University, Manhattan, KS (2012).
  17. A. Ratanavis, “Theoretical and experimental studies of optically pumped molecular gas lasers,” Ph.D. thesis, the University of New Mexico, Albuquerque, New Mexico (2010).
  18. V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” Vol. 1278 of 2010 AIP conference proceedings (American Institute of Physics, 2010), p. 749.
  19. “HITRAN spectroscopic database,” http://hitran.iao.ru/molecule .
  20. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  21. A. E. Siegman, Lasers (University Science Books, Sausalito California, 1986).
  22. F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the v1+3v3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys. 101(23–24), 3427–3438 (2003).
    [Crossref]

2017 (2)

2016 (3)

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
[Crossref]

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
[Crossref]

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

2015 (1)

2014 (1)

2012 (5)

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

2011 (1)

2007 (1)

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

2003 (1)

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the v1+3v3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys. 101(23–24), 3427–3438 (2003).
[Crossref]

2002 (1)

1973 (1)

Abeeluck, A. K.

Alharbi, M.

Baumgart, B.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Belardi, W.

Benabid, F.

Bradley, T.

Campbell, N.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Chafer, M.

Chen, Y.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
[Crossref]

Corwin, K. L.

Couny, F.

Dadashzadeh, N.

David, D.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Debord, B.

Eggleton, B. J.

Fiedler, T.

Fourcade-Dutin, C.

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Gerome, F.

Gérôme, F.

Hale, G. M.

Hassan, M. R. A.

Headley, C.

Herregodts, F.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the v1+3v3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys. 101(23–24), 3427–3438 (2003).
[Crossref]

Huet, T. R.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the v1+3v3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys. 101(23–24), 3427–3438 (2003).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jones, A. M.

Kadel, R.

Kerrinckx, E.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the v1+3v3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys. 101(23–24), 3427–3438 (2003).
[Crossref]

Knight, J.

Knight, J. C.

Li, Z.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
[Crossref]

Litchinitser, N. M.

Liu, Z.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Lü, H.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Ma, Y.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Mao, C.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

Nampoothiri, A. V. V.

Querry, M. R.

Ratanavis, A.

Rudolph, W.

Sacks, Z. S.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Schiffer, Z.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Thirugnanasambandam, M. P.

Vander Auwera, J.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the v1+3v3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys. 101(23–24), 3427–3438 (2003).
[Crossref]

Wadsworth, W. J.

Wang, X.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Wang, Y. Y.

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

Wang, Z.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref] [PubMed]

Washburn, B. R.

Weerasinghe, H. W. K.

Wheeler, N. V.

Xu, M.

Yu, F.

Zhang, N.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
[Crossref]

Zhou, P.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Zhou, Z.

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Laser Phys. (1)

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, “Review on recent progress on mid-infrared fiber lasers,” Laser Phys. 22(11), 1744–1751 (2012).
[Crossref]

Mol. Phys. (1)

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. Vander Auwera, “Absolute line intensities in the v1+3v3 band of 12C2H2 by laser photoacoustic spectroscopy and Fourier transform spectroscopy,” Mol. Phys. 101(23–24), 3427–3438 (2003).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Proc. SPIE (3)

Z. Wang, Z. Zhou, Z. Li, N. Zhang, and Y. Chen, “Tunable mid-infrared emission from acetylene-filled hollow-core fiber,” Proc. SPIE 10030, 1003013 (2016).
[Crossref]

A. M. Jones, C. Fourcade-Dutin, C. Mao, B. Baumgart, A. V. V. Nampoothiri, N. Campbell, Y. Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Other (5)

A. M. Jones, “Realizing a mid-infrared optically pumped molecular gas laser inside hollow-core photonic crystal fiber,” Ph.D. thesis, Kansas State University, Manhattan, KS (2012).

A. Ratanavis, “Theoretical and experimental studies of optically pumped molecular gas lasers,” Ph.D. thesis, the University of New Mexico, Albuquerque, New Mexico (2010).

V. Nampoothiri, A. M. Jones, A. Ratanavis, N. Campbell, R. Kadel, N. Wheeler, F. Couny, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Optically pumped C2H2 and HCN lasers with conventional cavities and based on hollow core photonic crystal fibers,” in “International Symposium on High Power Laser Ablation,” Vol. 1278 of 2010 AIP conference proceedings (American Institute of Physics, 2010), p. 749.

“HITRAN spectroscopic database,” http://hitran.iao.ru/molecule .

A. E. Siegman, Lasers (University Science Books, Sausalito California, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The Vibration normal modes of C2H2. The small, white-filled circles represent hydrogen atoms and the larger, gray-filled circles represent carbon atoms; the horizontal lines between them represent electrostatic forces; the black arrows indicate the relative motions of the atoms; the notations v1 - v5 stand for the energy levels of the vibrational normal modes; (b) The simulated absorption spectrum of acetylene molecules (12C2H2) in the 1.5 μm spectral region at room temperature using data from the HITRAN database; the numbers represent the corresponding absorption lines.
Fig. 2
Fig. 2 The simplified energy level diagram of acetylene molecules showing the pump and laser transitions; the left table displays corresponding measured laser wavelengths.
Fig. 3
Fig. 3 (a) Schematic of the experimental setup. AOM: acousto-optical modulator; EDFA: erbium-doped fiber amplifier; M: mirror, M3 and M4 are on flipper mount; L: plano-convex lens; IBF: infrared bandpass filter; W1: antireflection coated BK7 window; W2: uncoated sapphire window; (b) Cross-section of the HCF used in our experiments; (c) Measured transmission loss of the HCF near pump wavelength (black line, bottom x-axis) and laser (red line, top x-axis) wavelength.
Fig. 4
Fig. 4 Measured spectra with ASE background of (a) about 2 W pulsed pump light and (b) 6 W CW pump light when the seed is tuned to different absorption lines.
Fig. 5
Fig. 5 (a) Measured optical spectra for different pump transitions at ~1.9 mbar with 0.8 W incident pump power, inset: mode profile of the far-field mid-infrared laser beam, measured using a two-dimensional scan across the output beam (due to partially damaged photosurface of detectors, the beam is not perfectly symmetric); Output optical spectra when tuned to the strongest P branch absorption line P(9) with different incident pump power at (b) 0.5 mbar, (c) 0.9 mbar and (d) 1.5 mbar respectively.
Fig. 6
Fig. 6 (a) Measured laser pulse energy with respect to coupled pump pulse energy at different acetylene pressure levels pumped with P(9) absorption line; (b) The output laser energy and the residual pump energy versus acetylene pressure when pumped at different absorption lines; (c) Measured laser pulse energy and (d) energy conversion efficiency with respect to coupled pump pulse energy for different pump lines with given acetylene pressure of 0.9 mbar.
Fig. 7
Fig. 7 (a) Measured output CW laser power as a function coupled CW pump power at various acetylene pressure levels pumped with P(15) absorption line; (b) The output laser power and the residual pump power versus acetylene pressure when pumped at different absorption lines with the given pump power; (c) Measured CW laser power and (d) power conversion efficiency with respect to coupled pump power for different pump lines when acetylene pressure is 1.5 mbar.

Metrics