Abstract

We present an omnidirectional broadband metasurface absorber whose dielectric-metal-dielectric layers are modulated by cylinder arrays. The simultaneous excitation of surface plasmon resonance and localized surface plasmon resonance affords an average optical absorption of 0.97 (0.9, experiment), with peak absorption up to 0.99 (0.984, experiment), for the wavelength range of 400-1100 nm, and absorption >0.93 (0.87, experiment) for incident angles up to 60°. The device, which is fabricated by continuously variable spatial frequency photolithography, outperforms previously reported absorbers in cost. Moreover, it exhibits considerably lower emissivity (weak absorption) in the mid-infrared range, which makes it promising for energy harvesting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

Hybrid graphene metasurface for near-infrared absorbers

Md. Mahfuzur Rahman, Aikifa Raza, Hammad Younes, Amal AlGhaferi, Matteo Chiesa, and JinYou Lu
Opt. Express 27(18) 24866-24876 (2019)

Near-infrared chiral plasmonic metasurface absorbers

Leixin Ouyang, Wei Wang, Daniel Rosenmann, David A. Czaplewski, Jie Gao, and Xiaodong Yang
Opt. Express 26(24) 31484-31489 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  2. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).
  3. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
    [Crossref] [PubMed]
  4. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  5. H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
    [Crossref] [PubMed]
  6. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref] [PubMed]
  7. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
    [Crossref] [PubMed]
  8. Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
    [Crossref]
  9. Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
    [Crossref] [PubMed]
  10. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
    [Crossref]
  11. T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
    [Crossref]
  12. S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
    [Crossref]
  13. Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
    [Crossref]
  14. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
    [Crossref] [PubMed]
  15. K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
    [Crossref]
  16. J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
    [Crossref] [PubMed]
  17. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref] [PubMed]
  18. K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
    [Crossref]
  19. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  20. Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
    [Crossref] [PubMed]
  21. Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
    [Crossref]
  22. J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
    [Crossref]
  23. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  24. J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
    [Crossref]
  25. S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
    [Crossref]
  26. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
    [Crossref]
  27. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref] [PubMed]
  28. C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
    [Crossref]
  29. B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
    [Crossref]
  30. I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
    [Crossref]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  32. K Yee, IEEE Antennas and Propagation Society, (1966).
  33. Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017).
    [Crossref] [PubMed]
  34. W. Qiao, M. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano–grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
    [Crossref] [PubMed]
  35. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons (Cambridge University, Cambridge, 2010).
  36. G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  37. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
    [Crossref] [PubMed]
  38. K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
    [Crossref]

2018 (2)

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

2017 (11)

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017).
[Crossref] [PubMed]

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

2016 (11)

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

W. Qiao, M. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano–grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

2015 (1)

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

2014 (1)

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

2012 (3)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

2011 (1)

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

2010 (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

2005 (1)

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

2000 (1)

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

1998 (1)

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

AlGhaferi, A.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Alketbi, A. S.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Atwater, H. A.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Bahauddin, S. M.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Bardou, N.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Bent, S. F.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Boltasseva, A.

Bozok, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Bukowsky, C. R.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Butun, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, B.-Y.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Chen, G.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Chen, H.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Chen, L.

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

Chen, Y.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Cheng, F.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Cheng, W. H.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Collin, S.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Cui, Y.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Dai, P.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Dereshgi, S. A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Duan, H.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Duan, X.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Dupuis, C.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Fabreguette, F. H.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Fang, B.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Fang, N. X.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Fang, Z.

Fountaine, K. T.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Gao, J.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

George, S. M.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Ghobadi, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Guillemoles, J. F.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Guo, L. J.

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Guo, W.

Hägglund, C.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Hajian, H.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Han, T.

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

He, S.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Heintz, O.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Huang, M.

Huang, Y.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Huang, Z.

Hung Fung, K.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Ji, C.

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Jin, Y.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Johnson, D. C.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Kadirgan, F.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Kumar, A.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lai, Y.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Lee, K.-T.

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Lee, Y.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Lee, Y. E.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Lemaître, A.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Li, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Lin, K.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Liu, L.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Liu, N.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Liu, X.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Y.

Lu, J. Y.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Luo, M.

Luo, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Ma, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Martin, O. J. F.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Massiot, I.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Matuschek, M.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Naik, G. V.

Nam, S. H.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Neubrech, F.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Ni, X. J.

Noorulla, S.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ozbay, E.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Pang, C. L.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Phung, T. M.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Pu, D.

Pu, M.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Qian, Q.

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Qiao, W.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Raza, A.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Robatjazi, H.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Roelofs, K. E.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Ruiz, R.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Sands, T. D.

Santschi, C.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Schroeder, J. L.

Sechrist, Z. A.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Shen, S.

Shen, W. D.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Söhmen, H. M.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Su, P.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Sun, T.

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Süzer, S.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Tesfamichael, T.

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

Thomann, I.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Türe, I. E.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Vandamme, N.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Wäckelgård, E.

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

Wang, C.

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Wang, H.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, X.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Wang, Y.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Wangperawong, A.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Wei, G.

Wetherilt, A. J.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Wilke, K.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Wu, S.

Xu, F.

Xu, J.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Xu, Y.

Yan, C.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Yan, Y.

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Yang, C. Y.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Yang, X.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Ye, Y.

Yen, Y.-T.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Yu, C.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Yuan, W. J.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zeltzer, G.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Zhang, J.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Zhang, T. J.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Zhang, X.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zhang, Y. G.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zhang, Z.

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Zhao, H.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

Zhou, L.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, Y.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, M.

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Zhu, X.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

ACS Nano (1)

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

ACS Photonics (4)

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Adv. Mater. (1)

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Adv. Optical Mater. (4)

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Appl. Phys. Lett. (5)

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Chem. Mater. (1)

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Nano Energy (1)

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Nano Lett. (2)

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Nanoscale (1)

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Sci. Rep. (2)

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Science (2)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

Sol. Energy (1)

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Other (3)

D. Sarid and W. Challener, Modern Introduction to Surface Plasmons (Cambridge University, Cambridge, 2010).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

K Yee, IEEE Antennas and Propagation Society, (1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of proposed broadband omnidirectional absorber.
Fig. 2
Fig. 2 (a) Schematic of fabrication processes. (b) Scanning electron microscope (SEM) image of proposed absorber.
Fig. 3
Fig. 3 (a) Calculated and (b) measured absorption spectra of proposed absorber at normal incidence.
Fig. 4
Fig. 4 (a) Calculated and (b) measured incident angle–resolved spectra of proposed absorber. (c) Calculated and measured average absorptions of absorber. (d) Optical images of fabricated absorber acquired at different incident angles.
Fig. 5
Fig. 5 Comparison between (a) calculated and (b) measured absorption spectra corresponding to each step of fabrication process.
Fig. 6
Fig. 6 Intensity maps of magnetic field for λ = 400, 600, and 938 nm. (a)–(c) Without SiNx coating. (d)–(f) With SiNx coating. (g)–(i) Without grating arrays.
Fig. 7
Fig. 7 (a) Calculated absorption spectrum for different grating shapes. (b) Calculated absorption spectra for different constituent materials.
Fig. 8
Fig. 8 (a) Calculated absorption spectrum of proposed device overlapped with AM1.5 solar spectrum (300–2000 nm). (b) Calculated absorption spectrum of device in mid-infrared range.

Tables (1)

Tables Icon

Table 1 The comparison between this structure with other absorption structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x = 2π λ sin θ i + 2π P = w c ϵ d ϵ m ε d + ϵ m ,

Metrics