Abstract

The inner characteristics of solidification and crack propagation in laser spot welding of four representative aluminum alloys, A1050, A2024, A5083 and A6061, were firstly observed with the X-ray phase contrast method. Keyhole disappeared within 1 ms after the laser was shut down. The solidification process finished in 2 ms for A1050, 3 ms for A2024, 5 ms for A5083, and 3 ms for A6061, respectively. Longitudinal view area of the molten pool decreased as the thermal conductivity increased, while the average solidification rate increased with increase of the thermal conductivity. Hot crack was observed to propagate from the bottom to the upper surface in the center of spot weld of A2024, A5083, and A6061, which was also the first in situ observation of crack during the welding process. Both the SEM, EBSD and Micro-X-ray computed tomography (CT) results validated that there was a crack propagation in the spot weld, and the mechanism for this crack formation was discussed. This paper provides a better understanding of solidification and crack formation in laser manufacturing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra high power (100  kW) fiber laser welding of steel

Yousuke Kawahito, Hongze Wang, Seiji Katayama, and Daichi Sumimori
Opt. Lett. 43(19) 4667-4670 (2018)

Observation and understanding in laser welding of pure titanium at subatmospheric pressure

Ming Gao, Yousuke Kawahito, and Shogo Kajii
Opt. Express 25(12) 13539-13548 (2017)

Monitoring of keyhole entrance and molten pool with quality analysis during adjustable ring mode laser welding

Lin Wang, Masoud Mohammadpour, Baixuan Yang, Xiangdong Gao, Jean-Philippe Lavoie, Klaus Kleine, Fanrong Kong, and Radovan Kovacevic
Appl. Opt. 59(6) 1576-1584 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Baumberg, “Breaking the mould: Casting on the nanometre scale,” Nat. Mater. 5(1), 2–5 (2006).
    [Crossref]
  2. E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
    [Crossref]
  3. T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).
  4. S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
    [Crossref] [PubMed]
  5. Y. Meng, M. Gao, and X. Zeng, “Effects of arc types on the laser-arc synergic effects of hybrid welding,” Opt. Express 26(11), 14775–14785 (2018).
    [Crossref] [PubMed]
  6. J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
    [Crossref] [PubMed]
  7. M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
    [Crossref] [PubMed]
  8. X. Gao, N. Ma, and L. Du, “Magneto-optical imaging characteristics of weld defects under alternating magnetic field excitation,” Opt. Express 26(8), 9972–9983 (2018).
    [Crossref] [PubMed]
  9. H. Wang, Y. Zhang, and S. Li, “Laser welding of laminated electrical steels,” J. Mater. Process. Technol. 230, 99–108 (2016).
    [Crossref]
  10. E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
    [Crossref]
  11. Y. Zhang, H. Wang, K. Chen, and S. Li, “Comparison of laser and TIG welding of laminated electrical steels,” J. Mater. Process. Technol. 247, 55–63 (2017).
    [Crossref]
  12. H. Huang, N. Ma, T. Hashimoto, and H. Murakawa, “Welding deformation and residual stresses in arc welded lap joints by modified iterative analysis,” Sci. Technol. Weld. Join. 20(7), 571–577 (2015).
    [Crossref]
  13. W. Savage, E. Nippes, and J. Varsik, “Hot-Cracking Susceptibility of 3004 Aluminum,” Weld. J. 58, 1–9 (1979).
  14. I. Farup, J.-M. Drezet, and M. Rappaz, “In situ observation of hot tearing formation in succinonitrile-acetone,” Acta Mater. 49(7), 1261–1269 (2001).
    [Crossref]
  15. S. Kou, “A criterion for cracking during solidification,” Acta Mater. 88, 366–374 (2015).
    [Crossref]
  16. J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
    [Crossref] [PubMed]
  17. J. R. Davis, “Aluminum and Aluminum Alloys,” ASM International, 351–416 (2013).
  18. S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito, “Fibre laser welding of aluminium alloy,” Weld. Int. 23(10), 744–752 (2009).
    [Crossref]
  19. H. Wang, M. Nakanishi, and Y. Kawahito, “Dynamic balance of heat and mass in high power density laser welding,” Opt. Express 26(5), 6392–6399 (2018).
    [Crossref] [PubMed]
  20. L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des. 108, 707–717 (2016).
    [Crossref]
  21. J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
    [Crossref]
  22. G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
    [Crossref]
  23. J. Liu and S. Kou, “Crack susceptibility of binary aluminum alloys during solidification,” Acta Mater. 110, 84–94 (2016).
    [Crossref]
  24. P. Von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 46(4), 1678–1688 (2015).
    [Crossref]
  25. J. Liu, H. P. Duarte, and S. Kou, “Evidence of back diffusion reducing cracking during solidification,” Acta Mater. 122, 47–59 (2017).
    [Crossref]
  26. A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
    [Crossref]
  27. P. von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum,” in High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications V (International Society for Optics and Photonics, 2016), p. 97410H.
  28. M. Kang, H. N. Han, and C. Kim, “Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam,” Materials (Basel) 11(4), 648 (2018).
    [Crossref] [PubMed]
  29. N. Bakir, A. Gumenyuk, and M. Rethmeier, “Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique,” Sci. Technol. Weld. Join. 23, 1–7 (2017).
  30. M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
    [Crossref]
  31. Y. Kawahito and H. Wang, “In-situ observation of gap filling in laser butt welding,” Scr. Mater. 154, 73–77 (2018).
    [Crossref]
  32. C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
    [Crossref] [PubMed]
  33. C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
    [Crossref] [PubMed]
  34. N. Seto, S. Katayama, and A. Matsunawa, “Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys,” Weld. Int. 15(3), 191–202 (2001).
    [Crossref]
  35. A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, “Porosity formation mechanism and its prevention in laser welding,” Weld. Int. 17(6), 431–437 (2003).
    [Crossref]
  36. A. M. Handbook, “Properties of wrought aluminum and aluminum alloys,” ASM International Hand Book Committee 2, 62–122 (1990).
  37. C. Zhang, H. Zhang, L. Wang, M. Gao, and X. Zeng, “Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy,” Metall. Mater. Trans., in press (2018).

2018 (8)

Y. Meng, M. Gao, and X. Zeng, “Effects of arc types on the laser-arc synergic effects of hybrid welding,” Opt. Express 26(11), 14775–14785 (2018).
[Crossref] [PubMed]

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

X. Gao, N. Ma, and L. Du, “Magneto-optical imaging characteristics of weld defects under alternating magnetic field excitation,” Opt. Express 26(8), 9972–9983 (2018).
[Crossref] [PubMed]

H. Wang, M. Nakanishi, and Y. Kawahito, “Dynamic balance of heat and mass in high power density laser welding,” Opt. Express 26(5), 6392–6399 (2018).
[Crossref] [PubMed]

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Y. Kawahito and H. Wang, “In-situ observation of gap filling in laser butt welding,” Scr. Mater. 154, 73–77 (2018).
[Crossref]

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

M. Kang, H. N. Han, and C. Kim, “Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam,” Materials (Basel) 11(4), 648 (2018).
[Crossref] [PubMed]

2017 (9)

N. Bakir, A. Gumenyuk, and M. Rethmeier, “Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique,” Sci. Technol. Weld. Join. 23, 1–7 (2017).

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

J. Liu, H. P. Duarte, and S. Kou, “Evidence of back diffusion reducing cracking during solidification,” Acta Mater. 122, 47–59 (2017).
[Crossref]

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Y. Zhang, H. Wang, K. Chen, and S. Li, “Comparison of laser and TIG welding of laminated electrical steels,” J. Mater. Process. Technol. 247, 55–63 (2017).
[Crossref]

J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
[Crossref] [PubMed]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

2016 (3)

L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des. 108, 707–717 (2016).
[Crossref]

H. Wang, Y. Zhang, and S. Li, “Laser welding of laminated electrical steels,” J. Mater. Process. Technol. 230, 99–108 (2016).
[Crossref]

J. Liu and S. Kou, “Crack susceptibility of binary aluminum alloys during solidification,” Acta Mater. 110, 84–94 (2016).
[Crossref]

2015 (5)

P. Von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 46(4), 1678–1688 (2015).
[Crossref]

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

S. Kou, “A criterion for cracking during solidification,” Acta Mater. 88, 366–374 (2015).
[Crossref]

J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
[Crossref]

H. Huang, N. Ma, T. Hashimoto, and H. Murakawa, “Welding deformation and residual stresses in arc welded lap joints by modified iterative analysis,” Sci. Technol. Weld. Join. 20(7), 571–577 (2015).
[Crossref]

2013 (1)

2009 (1)

S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito, “Fibre laser welding of aluminium alloy,” Weld. Int. 23(10), 744–752 (2009).
[Crossref]

2006 (1)

J. J. Baumberg, “Breaking the mould: Casting on the nanometre scale,” Nat. Mater. 5(1), 2–5 (2006).
[Crossref]

2003 (1)

A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, “Porosity formation mechanism and its prevention in laser welding,” Weld. Int. 17(6), 431–437 (2003).
[Crossref]

2001 (2)

N. Seto, S. Katayama, and A. Matsunawa, “Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys,” Weld. Int. 15(3), 191–202 (2001).
[Crossref]

I. Farup, J.-M. Drezet, and M. Rappaz, “In situ observation of hot tearing formation in succinonitrile-acetone,” Acta Mater. 49(7), 1261–1269 (2001).
[Crossref]

1992 (1)

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

1990 (1)

A. M. Handbook, “Properties of wrought aluminum and aluminum alloys,” ASM International Hand Book Committee 2, 62–122 (1990).

1979 (1)

W. Savage, E. Nippes, and J. Varsik, “Hot-Cracking Susceptibility of 3004 Aluminum,” Weld. J. 58, 1–9 (1979).

Agarwal, G.

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Albert, S.

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

Amirthalingam, M.

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Atwood, R. C.

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

Bakir, N.

N. Bakir, A. Gumenyuk, and M. Rethmeier, “Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique,” Sci. Technol. Weld. Join. 23, 1–7 (2017).

Baumberg, J. J.

J. J. Baumberg, “Breaking the mould: Casting on the nanometre scale,” Nat. Mater. 5(1), 2–5 (2006).
[Crossref]

Beese, A.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Cai, B.

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

Chelladurai, A.

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

Chen, G.

Chen, K.

Y. Zhang, H. Wang, K. Chen, and S. Li, “Comparison of laser and TIG welding of laminated electrical steels,” J. Mater. Process. Technol. 247, 55–63 (2017).
[Crossref]

Chen, L.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Cui, H.

J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
[Crossref]

Cunningham, R. W.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

David, S. A.

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

De, A.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

De Carlo, F.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Debroy, T.

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

Dippenaar, R.

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Drezet, J.-M.

I. Farup, J.-M. Drezet, and M. Rappaz, “In situ observation of hot tearing formation in succinonitrile-acetone,” Acta Mater. 49(7), 1261–1269 (2001).
[Crossref]

Du, L.

Duarte, H. P.

J. Liu, H. P. Duarte, and S. Kou, “Evidence of back diffusion reducing cracking during solidification,” Acta Mater. 122, 47–59 (2017).
[Crossref]

Elmer, J.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Farup, I.

I. Farup, J.-M. Drezet, and M. Rappaz, “In situ observation of hot tearing formation in succinonitrile-acetone,” Acta Mater. 49(7), 1261–1269 (2001).
[Crossref]

Fezzaa, K.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Gao, M.

Y. Meng, M. Gao, and X. Zeng, “Effects of arc types on the laser-arc synergic effects of hybrid welding,” Opt. Express 26(11), 14775–14785 (2018).
[Crossref] [PubMed]

L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des. 108, 707–717 (2016).
[Crossref]

C. Zhang, H. Zhang, L. Wang, M. Gao, and X. Zeng, “Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy,” Metall. Mater. Trans., in press (2018).

Gao, X.

Gopal, K.

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

Gumenyuk, A.

N. Bakir, A. Gumenyuk, and M. Rethmeier, “Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique,” Sci. Technol. Weld. Join. 23, 1–7 (2017).

Guo, E.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

Ha, N.

Han, H. N.

M. Kang, H. N. Han, and C. Kim, “Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam,” Materials (Basel) 11(4), 648 (2018).
[Crossref] [PubMed]

Handbook, A. M.

A. M. Handbook, “Properties of wrought aluminum and aluminum alloys,” ASM International Hand Book Committee 2, 62–122 (1990).

Hashimoto, T.

H. Huang, N. Ma, T. Hashimoto, and H. Murakawa, “Welding deformation and residual stresses in arc welded lap joints by modified iterative analysis,” Sci. Technol. Weld. Join. 20(7), 571–577 (2015).
[Crossref]

Hermans, M.

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Huang, H.

H. Huang, N. Ma, T. Hashimoto, and H. Murakawa, “Welding deformation and residual stresses in arc welded lap joints by modified iterative analysis,” Sci. Technol. Weld. Join. 20(7), 571–577 (2015).
[Crossref]

Hundley, J. M.

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Jayakumar, T.

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

Jing, T.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

Kaierle, S.

P. Von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 46(4), 1678–1688 (2015).
[Crossref]

Kang, M.

M. Kang, H. N. Han, and C. Kim, “Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam,” Materials (Basel) 11(4), 648 (2018).
[Crossref] [PubMed]

Karagadde, S.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

Katayama, S.

S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito, “Fibre laser welding of aluminium alloy,” Weld. Int. 23(10), 744–752 (2009).
[Crossref]

A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, “Porosity formation mechanism and its prevention in laser welding,” Weld. Int. 17(6), 431–437 (2003).
[Crossref]

N. Seto, S. Katayama, and A. Matsunawa, “Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys,” Weld. Int. 15(3), 191–202 (2001).
[Crossref]

Kawahito, Y.

Y. Kawahito and H. Wang, “In-situ observation of gap filling in laser butt welding,” Scr. Mater. 154, 73–77 (2018).
[Crossref]

H. Wang, M. Nakanishi, and Y. Kawahito, “Dynamic balance of heat and mass in high power density laser welding,” Opt. Express 26(5), 6392–6399 (2018).
[Crossref] [PubMed]

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito, “Fibre laser welding of aluminium alloy,” Weld. Int. 23(10), 744–752 (2009).
[Crossref]

Kawakami, H.

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

Kazantsev, D.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

Kim, C.

M. Kang, H. N. Han, and C. Kim, “Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam,” Materials (Basel) 11(4), 648 (2018).
[Crossref] [PubMed]

Kou, S.

J. Liu, H. P. Duarte, and S. Kou, “Evidence of back diffusion reducing cracking during solidification,” Acta Mater. 122, 47–59 (2017).
[Crossref]

J. Liu and S. Kou, “Crack susceptibility of binary aluminum alloys during solidification,” Acta Mater. 110, 84–94 (2016).
[Crossref]

S. Kou, “A criterion for cracking during solidification,” Acta Mater. 88, 366–374 (2015).
[Crossref]

Lee, P. D.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

Leung, C. L. A.

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

Li, S.

Y. Zhang, H. Wang, K. Chen, and S. Li, “Comparison of laser and TIG welding of laminated electrical steels,” J. Mater. Process. Technol. 247, 55–63 (2017).
[Crossref]

H. Wang, Y. Zhang, and S. Li, “Laser welding of laminated electrical steels,” J. Mater. Process. Technol. 230, 99–108 (2016).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

Li, W.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

Liu, J.

J. Liu, H. P. Duarte, and S. Kou, “Evidence of back diffusion reducing cracking during solidification,” Acta Mater. 122, 47–59 (2017).
[Crossref]

J. Liu and S. Kou, “Crack susceptibility of binary aluminum alloys during solidification,” Acta Mater. 110, 84–94 (2016).
[Crossref]

Lu, F.

J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
[Crossref]

Ma, N.

X. Gao, N. Ma, and L. Du, “Magneto-optical imaging characteristics of weld defects under alternating magnetic field excitation,” Opt. Express 26(8), 9972–9983 (2018).
[Crossref] [PubMed]

H. Huang, N. Ma, T. Hashimoto, and H. Murakawa, “Welding deformation and residual stresses in arc welded lap joints by modified iterative analysis,” Sci. Technol. Weld. Join. 20(7), 571–577 (2015).
[Crossref]

Martin, J. H.

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Marussi, S.

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

Matsunawa, A.

A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, “Porosity formation mechanism and its prevention in laser welding,” Weld. Int. 17(6), 431–437 (2003).
[Crossref]

N. Seto, S. Katayama, and A. Matsunawa, “Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys,” Weld. Int. 15(3), 191–202 (2001).
[Crossref]

Mayer, J. A.

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Meng, Y.

Milewski, J.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Miyagi, M.

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

Mizutani, M.

S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito, “Fibre laser welding of aluminium alloy,” Weld. Int. 23(10), 744–752 (2009).
[Crossref]

A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, “Porosity formation mechanism and its prevention in laser welding,” Weld. Int. 17(6), 431–437 (2003).
[Crossref]

Moon, S.

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Mukherjee, T.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Murakawa, H.

H. Huang, N. Ma, T. Hashimoto, and H. Murakawa, “Welding deformation and residual stresses in arc welded lap joints by modified iterative analysis,” Sci. Technol. Weld. Join. 20(7), 571–577 (2015).
[Crossref]

Murugan, S.

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

Nagayama, H.

S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito, “Fibre laser welding of aluminium alloy,” Weld. Int. 23(10), 744–752 (2009).
[Crossref]

Nakanishi, M.

Nippes, E.

W. Savage, E. Nippes, and J. Varsik, “Hot-Cracking Susceptibility of 3004 Aluminum,” Weld. J. 58, 1–9 (1979).

Overmeyer, L.

P. Von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 46(4), 1678–1688 (2015).
[Crossref]

Phillion, A.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

Pollock, T. M.

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Rappaz, M.

I. Farup, J.-M. Drezet, and M. Rappaz, “In situ observation of hot tearing formation in succinonitrile-acetone,” Acta Mater. 49(7), 1261–1269 (2001).
[Crossref]

Rethmeier, M.

N. Bakir, A. Gumenyuk, and M. Rethmeier, “Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique,” Sci. Technol. Weld. Join. 23, 1–7 (2017).

Richardson, I.

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Rollett, A. D.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Roy, T. D.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Savage, W.

W. Savage, E. Nippes, and J. Varsik, “Hot-Cracking Susceptibility of 3004 Aluminum,” Weld. J. 58, 1–9 (1979).

Schaedler, T. A.

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Seto, N.

A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, “Porosity formation mechanism and its prevention in laser welding,” Weld. Int. 17(6), 431–437 (2003).
[Crossref]

N. Seto, S. Katayama, and A. Matsunawa, “Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys,” Weld. Int. 15(3), 191–202 (2001).
[Crossref]

Shoubu, T.

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

Shuai, S.

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

Sun, T.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Suttmann, O.

P. Von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 46(4), 1678–1688 (2015).
[Crossref]

Towrie, M.

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

Varsik, J.

W. Savage, E. Nippes, and J. Varsik, “Hot-Cracking Susceptibility of 3004 Aluminum,” Weld. J. 58, 1–9 (1979).

Venugopal, S.

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

Von Witzendorff, P.

P. Von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 46(4), 1678–1688 (2015).
[Crossref]

Wang, H.

Y. Kawahito and H. Wang, “In-situ observation of gap filling in laser butt welding,” Scr. Mater. 154, 73–77 (2018).
[Crossref]

H. Wang, M. Nakanishi, and Y. Kawahito, “Dynamic balance of heat and mass in high power density laser welding,” Opt. Express 26(5), 6392–6399 (2018).
[Crossref] [PubMed]

Y. Zhang, H. Wang, K. Chen, and S. Li, “Comparison of laser and TIG welding of laminated electrical steels,” J. Mater. Process. Technol. 247, 55–63 (2017).
[Crossref]

H. Wang, Y. Zhang, and S. Li, “Laser welding of laminated electrical steels,” J. Mater. Process. Technol. 230, 99–108 (2016).
[Crossref]

Wang, H.-P.

J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
[Crossref]

Wang, J.

J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
[Crossref]

Wang, L.

L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des. 108, 707–717 (2016).
[Crossref]

C. Zhang, H. Zhang, L. Wang, M. Gao, and X. Zeng, “Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy,” Metall. Mater. Trans., in press (2018).

Wang, X.

J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
[Crossref]

Wei, H.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Wen, H.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Wilson-Heid, A.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Withers, P. J.

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

Wu, Q.

Xiao, R.

Yahata, B. D.

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Zeng, X.

Y. Meng, M. Gao, and X. Zeng, “Effects of arc types on the laser-arc synergic effects of hybrid welding,” Opt. Express 26(11), 14775–14785 (2018).
[Crossref] [PubMed]

L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des. 108, 707–717 (2016).
[Crossref]

C. Zhang, H. Zhang, L. Wang, M. Gao, and X. Zeng, “Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy,” Metall. Mater. Trans., in press (2018).

Zhang, C.

L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des. 108, 707–717 (2016).
[Crossref]

C. Zhang, H. Zhang, L. Wang, M. Gao, and X. Zeng, “Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy,” Metall. Mater. Trans., in press (2018).

Zhang, H.

C. Zhang, H. Zhang, L. Wang, M. Gao, and X. Zeng, “Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy,” Metall. Mater. Trans., in press (2018).

Zhang, M.

Zhang, Q.

Zhang, W.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Zhang, Y.

Y. Zhang, H. Wang, K. Chen, and S. Li, “Comparison of laser and TIG welding of laminated electrical steels,” J. Mater. Process. Technol. 247, 55–63 (2017).
[Crossref]

H. Wang, Y. Zhang, and S. Li, “Laser welding of laminated electrical steels,” J. Mater. Process. Technol. 230, 99–108 (2016).
[Crossref]

Zhao, C.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Zhou, Y.

Zou, J.

Zuback, J.

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Acta Mater. (6)

J. Liu and S. Kou, “Crack susceptibility of binary aluminum alloys during solidification,” Acta Mater. 110, 84–94 (2016).
[Crossref]

J. Liu, H. P. Duarte, and S. Kou, “Evidence of back diffusion reducing cracking during solidification,” Acta Mater. 122, 47–59 (2017).
[Crossref]

E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A. Phillion, T. Jing, W. Li, and P. D. Lee, “The influence of nanoparticles on dendritic grain growth in Mg alloys,” Acta Mater. 152, 127–137 (2018).
[Crossref]

I. Farup, J.-M. Drezet, and M. Rappaz, “In situ observation of hot tearing formation in succinonitrile-acetone,” Acta Mater. 49(7), 1261–1269 (2001).
[Crossref]

S. Kou, “A criterion for cracking during solidification,” Acta Mater. 88, 366–374 (2015).
[Crossref]

E. Guo, A. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, and P. D. Lee, “Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography,” Acta Mater. 123, 373–382 (2017).
[Crossref]

ASM International Hand Book Committee (1)

A. M. Handbook, “Properties of wrought aluminum and aluminum alloys,” ASM International Hand Book Committee 2, 62–122 (1990).

J. Mater. Process. Technol. (3)

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

H. Wang, Y. Zhang, and S. Li, “Laser welding of laminated electrical steels,” J. Mater. Process. Technol. 230, 99–108 (2016).
[Crossref]

Y. Zhang, H. Wang, K. Chen, and S. Li, “Comparison of laser and TIG welding of laminated electrical steels,” J. Mater. Process. Technol. 247, 55–63 (2017).
[Crossref]

Mater. Des. (1)

L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy,” Mater. Des. 108, 707–717 (2016).
[Crossref]

Materials (Basel) (1)

M. Kang, H. N. Han, and C. Kim, “Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam,” Materials (Basel) 11(4), 648 (2018).
[Crossref] [PubMed]

Metall. Mater. Trans., A Phys. Metall. Mater. Sci. (1)

P. Von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 46(4), 1678–1688 (2015).
[Crossref]

Nat. Commun. (1)

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee, “In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing,” Nat. Commun. 9(1), 1355 (2018).
[Crossref] [PubMed]

Nat. Mater. (1)

J. J. Baumberg, “Breaking the mould: Casting on the nanometre scale,” Nat. Mater. 5(1), 2–5 (2006).
[Crossref]

Nature (1)

J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock, “3D printing of high-strength aluminium alloys,” Nature 549(7672), 365–369 (2017).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Laser Technol. (1)

J. Wang, H.-P. Wang, X. Wang, H. Cui, and F. Lu, “Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy,” Opt. Laser Technol. 66, 15–21 (2015).
[Crossref]

Prog. Mater. Sci. (1)

T. D. Roy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components–Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2017).

Sci. Rep. (1)

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Sci. Technol. Weld. Join. (3)

N. Bakir, A. Gumenyuk, and M. Rethmeier, “Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique,” Sci. Technol. Weld. Join. 23, 1–7 (2017).

A. Chelladurai, K. Gopal, S. Murugan, S. Albert, S. Venugopal, and T. Jayakumar, “Effect of energy transfer modes on solidification cracking in pulsed laser welding,” Sci. Technol. Weld. Join. 20(7), 578–584 (2015).
[Crossref]

H. Huang, N. Ma, T. Hashimoto, and H. Murakawa, “Welding deformation and residual stresses in arc welded lap joints by modified iterative analysis,” Sci. Technol. Weld. Join. 20(7), 571–577 (2015).
[Crossref]

Science (1)

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

Scr. Mater. (2)

G. Agarwal, M. Amirthalingam, S. Moon, R. Dippenaar, I. Richardson, and M. Hermans, “Experimental evidence of liquid feeding during solidification of a steel,” Scr. Mater. 146, 105–109 (2018).
[Crossref]

Y. Kawahito and H. Wang, “In-situ observation of gap filling in laser butt welding,” Scr. Mater. 154, 73–77 (2018).
[Crossref]

Weld. Int. (3)

N. Seto, S. Katayama, and A. Matsunawa, “Porosity formation mechanism and suppression procedure in laser welding of aluminium alloys,” Weld. Int. 15(3), 191–202 (2001).
[Crossref]

A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto, “Porosity formation mechanism and its prevention in laser welding,” Weld. Int. 17(6), 431–437 (2003).
[Crossref]

S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito, “Fibre laser welding of aluminium alloy,” Weld. Int. 23(10), 744–752 (2009).
[Crossref]

Weld. J. (1)

W. Savage, E. Nippes, and J. Varsik, “Hot-Cracking Susceptibility of 3004 Aluminum,” Weld. J. 58, 1–9 (1979).

Other (3)

J. R. Davis, “Aluminum and Aluminum Alloys,” ASM International, 351–416 (2013).

C. Zhang, H. Zhang, L. Wang, M. Gao, and X. Zeng, “Microcracking and mechanical properties in laser-arc hybrid welding of wrought Al-6Cu aluminum alloy,” Metall. Mater. Trans., in press (2018).

P. von Witzendorff, S. Kaierle, O. Suttmann, and L. Overmeyer, “Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum,” in High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications V (International Society for Optics and Photonics, 2016), p. 97410H.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 X-ray phase-contrast imaging system to observe the solidification crack in laser spot welding.
Fig. 2
Fig. 2 Dynamic characteristics of molten pool during solidification and cooling observed by X-ray imaging technology for: (a) A1050; (b) A2024; (c) A5083; and (d) A6061.
Fig. 3
Fig. 3 Relationship between solidification rate, molten pool area and thermal conductivity.
Fig. 4
Fig. 4 Characteristics of A5083 spot weld observed by Micro-X-ray computed tomography (CT): (a) front view; (b) right view.
Fig. 5
Fig. 5 Surface characteristics of the crack in the spot weld of A5083 observed by SEM: (a) overall view of the spot weld, (b) enlarged view of the crack zone.
Fig. 6
Fig. 6 Microstructure of the spot weld of A5083 observed by SEM and EBSD: (a) overall view of the cross-section observed by SEM; (b) inverse pole figure in overall front view of the cross-section by observed EBSD; (c) inverse pole figure in the enlarged view of zone (c) in sub figure (a) observed by EBSD, (d) inverse pole figure in the enlarged view of zone (d) in sub figure (a) observed by EBSD.
Fig. 7
Fig. 7 Schematic for solidification and crack formation on the upper surface of the spot weld: (a) solidification process; (b) final status of the solidified spot weld; (c) crack initiation stage; (d) final status of the cracked spot weld.
Fig. 8
Fig. 8 Schematic illustration for hot crack propagation of right view in A5083.

Tables (4)

Tables Icon

Table 1 Element composition of aluminum alloys (mass %).

Tables Icon

Table 2 Thermal conductivity of aluminum alloys.

Tables Icon

Table 3 Boiling temperature of elements in aluminum alloy.

Tables Icon

Table 4 Measured solidification rate and molten pool area for welded aluminum alloys.

Metrics