N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref]
[PubMed]
S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref]
[PubMed]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]
R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref]
[PubMed]
J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref]
[PubMed]
E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref]
[PubMed]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]
J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]
S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]
Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]
Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref]
[PubMed]
L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]
[PubMed]
S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]
C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]
P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]
R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]
B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref]
[PubMed]
Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref]
[PubMed]
P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref]
[PubMed]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]
Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref]
[PubMed]
S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref]
[PubMed]
Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]
Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref]
[PubMed]
E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]
S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref]
[PubMed]
L. Fabris, “Gold-based SERS tags for biomedical imaging,” J. Opt. 17(11), 114002 (2015).
[Crossref]
L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]
[PubMed]
J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref]
[PubMed]
W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]
S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref]
[PubMed]
M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]
L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]
[PubMed]
B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]
J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref]
[PubMed]
M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref]
[PubMed]
S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref]
[PubMed]
D. Grasseschi and H. E. Toma, “The SERS effect in coordination chemistry,” Coord. Chem. Rev. 333, 108–131 (2017).
[Crossref]
P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref]
[PubMed]
Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref]
[PubMed]
Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref]
[PubMed]
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref]
[PubMed]
Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref]
[PubMed]
H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]
H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref]
[PubMed]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
C. Haynes and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[Crossref]
R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref]
[PubMed]
B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]
P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref]
[PubMed]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref]
[PubMed]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref]
[PubMed]
J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref]
[PubMed]
S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref]
[PubMed]
L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110(18), 5973–5977 (2006).
[Crossref]
[PubMed]
Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref]
[PubMed]
H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref]
[PubMed]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref]
[PubMed]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref]
[PubMed]
B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]
B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref]
[PubMed]
B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref]
[PubMed]
B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref]
[PubMed]
H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref]
[PubMed]
S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref]
[PubMed]
A. J. Caires, D. C. B. Alves, C. Fantini, A. S. Ferlauto, and L. O. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorods nanocomposite for surface-enhanced Raman spectroscopy,” RSC Advances 5(58), 46552–46557 (2015).
[Crossref]
S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref]
[PubMed]
E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]
S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref]
[PubMed]
P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref]
[PubMed]
W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]
N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref]
[PubMed]
S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
J. R. Lombardi and R. L. Birke, “A unified view of surface-enhanced Raman scattering,” Acc. Chem. Res. 42(6), 734–742 (2009).
[Crossref]
[PubMed]
C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref]
[PubMed]
I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
[Crossref]
[PubMed]
Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref]
[PubMed]
P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]
R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref]
[PubMed]
S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref]
[PubMed]
J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref]
[PubMed]
T. Vosgröne and A. J. Meixner, “Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules,” ChemPhysChem 6(1), 154–163 (2005).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]
S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref]
[PubMed]
P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]
Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref]
[PubMed]
J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref]
[PubMed]
J. E. Moore, S. M. Morton, and L. Jensen, “Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS,” J. Phys. Chem. Lett. 3(17), 2470–2475 (2012).
[Crossref]
[PubMed]
S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref]
[PubMed]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57(6), 747–750 (1986).
[Crossref]
[PubMed]
B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref]
[PubMed]
S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref]
[PubMed]
B. Nikoobakht and M. A. El-sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]
Y.-F. Chen, L. Jiang, M. Mancuso, A. Jain, V. Oncescu, and D. Erickson, “Optofluidic opportunities in global health, food, water and energy,” Nanoscale 4(16), 4839–4857 (2012).
[Crossref]
[PubMed]
Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref]
[PubMed]
S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref]
[PubMed]
B. K. Keller, M. D. DeGrandpre, and C. P. Palmer, “Waveguiding properties of fiber-optic capillaries for chemical sensing applications,” Sens. Actuators B Chem. 125(2), 360–371 (2007).
[Crossref]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
B. N. Khlebtsov, V. A. Khanadeev, E. V. Panfilova, D. N. Bratashov, and N. G. Khlebtsov, “Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides,” ACS Appl. Mater. Interfaces 7(12), 6518–6529 (2015).
[Crossref]
[PubMed]
L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]
[PubMed]
P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]
S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, “Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins,” ACS Appl. Mater. Interfaces 4(12), 7069–7075 (2012).
[Crossref]
[PubMed]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]
[PubMed]
I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spectroscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref]
[PubMed]
B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref]
[PubMed]
Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref]
[PubMed]
S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]
J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref]
[PubMed]
J. Fan, M. Qi, R. Fu, and L. Qu, “Performance of graphene sheets as stationary phase for capillary gas chromatographic separations,” J. Chromatogr. A 1399, 74–79 (2015).
[Crossref]
[PubMed]
Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref]
[PubMed]
Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]
S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref]
[PubMed]
S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref]
[PubMed]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref]
[PubMed]
B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]
Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6(1), 21682 (2016).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref]
[PubMed]
S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, “Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion,” ACS Appl. Mater. Interfaces 5(17), 8724–8732 (2013).
[Crossref]
[PubMed]
B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref]
[PubMed]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref]
[PubMed]
L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110(18), 5973–5977 (2006).
[Crossref]
[PubMed]
H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref]
[PubMed]
M. Shanthil, H. Fathima, and K. George Thomas, “Cost-effective plasmonic platforms: glass capillaries decorated with Ag@SiO2 nanoparticles on inner walls as SERS substrates,” ACS Appl. Mater. Interfaces 9(23), 19470–19477 (2017).
[Crossref]
[PubMed]
B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]
P. Mandal, S. Mondal, G. Behera, S. Sharma, and K. P. S. Parmar, “Plasmonic ladder-like structure and graphene assisted high surface enhanced Raman scattering detection,” J. Appl. Phys. 120(17), 173101 (2016).
[Crossref]
Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref]
[PubMed]
S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref]
[PubMed]
S. M. Morton, D. W. Silverstein, and L. Jensen, “Theoretical studies of plasmonics using electronic structure methods,” Chem. Rev. 111(6), 3962–3994 (2011).
[Crossref]
[PubMed]
H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref]
[PubMed]
C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
A. Hakonen, P. O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, and M. Käll, “Explosive and chemical threat detection by surface-enhanced Raman scattering: a review,” Anal. Chim. Acta 893, 1–13 (2015).
[Crossref]
[PubMed]
P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]
Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref]
[PubMed]
C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref]
[PubMed]
A. Hakonen, T. Rindzevicius, M. S. Schmidt, P. O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, and M. Käll, “Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion,” Nanoscale 8(3), 1305–1308 (2016).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
Y. Han, S. Tan, M. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22(24), 2647–2651 (2010).
[Crossref]
[PubMed]
R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers and membranes,” Nanotechnol. Rev. 5(4), 377–391 (2016).
[Crossref]
S. Feng, M. C. Dos Santos, B. R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A. L. Elías, Y. Lei, N. Perea-López, M. Endo, M. Pan, M. A. Pimenta, and M. Terrones, “Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering,” Sci. Adv. 2(7), e1600322 (2016).
[Crossref]
[PubMed]
D. Grasseschi and H. E. Toma, “The SERS effect in coordination chemistry,” Coord. Chem. Rev. 333, 108–131 (2017).
[Crossref]
H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref]
[PubMed]
S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, “Is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching?” Sci. Rep. 3(1), 3336 (2013).
[Crossref]
[PubMed]
C. Haynes and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107(30), 7426–7433 (2003).
[Crossref]
B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]
J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref]
[PubMed]
N. D. Burrows, W. Lin, J. G. Hinman, J. M. Dennison, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, J. Li, and C. J. Murphy, “Surface chemistry of gold nanorods,” Langmuir 32(39), 9905–9921 (2016).
[Crossref]
[PubMed]
P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana, and C. J. S. de Matos, “Graphene oxide/gold nanorod nanocomposite for stable surface enhanced Raman spectroscopy,” ACS Photonics 3(6), 1027–1035 (2016).
[Crossref]
T. Vosgröne and A. J. Meixner, “Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules,” ChemPhysChem 6(1), 154–163 (2005).
[Crossref]
[PubMed]
Q. Qu, Y. Shen, C. Gu, Z. Gu, Q. Gu, C. Wang, and X. Hu, “Capillary column coated with graphene oxide as stationary phase for gas chromatography,” Anal. Chim. Acta 757, 83–87 (2012).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref]
[PubMed]
H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref]
[PubMed]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
C. Xu and X. Wang, “Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates,” Small 5(19), 2212–2217 (2009).
[Crossref]
[PubMed]
H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, “DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy,” J. Phys. Chem. B 109(11), 5012–5020 (2005).
[Crossref]
[PubMed]
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]
J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131(2), 849–854 (2009).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref]
[PubMed]
C. Xu and X. Wang, “Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates,” Small 5(19), 2212–2217 (2009).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]
C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref]
[PubMed]
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]
C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref]
[PubMed]
A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17(13), 2024–2030 (2007).
[Crossref]
C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref]
[PubMed]
N. Ye, J. Li, C. Gao, and Y. Xie, “Simultaneous determination of atropine, scopolamine, and anisodamine in Flos daturae by capillary electrophoresis using a capillary coated by graphene oxide,” J. Sep. Sci. 36(16), 2698–2702 (2013).
[Crossref]
[PubMed]
P. T. Yin, S. Shah, M. Chhowalla, and K.-B. Lee, “Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications,” Chem. Rev. 115(7), 2483–2531 (2015).
[Crossref]
[PubMed]
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, and H. Yang, “Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues,” Sens. Actuators B Chem. 241, 1008–1013 (2017).
[Crossref]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J. Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M. S. Dresselhaus, “Molecular selectivity of graphene-enhanced Raman scattering,” Nano Lett. 15(5), 2892–2901 (2015).
[Crossref]
[PubMed]
H. Hou, P. Wang, J. Zhang, C. Li, and Y. Jin, “Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity,” ACS Appl. Mater. Interfaces 7(32), 18038–18045 (2015).
[Crossref]
[PubMed]
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. G. Hou, “Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets,” ACS Nano 5(2), 952–958 (2011).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]
S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon NY 81(1), 767–772 (2015).
[Crossref]
Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]
C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y.-P. Zhao, and L.-H. Wang, “An Ultrasensitive sers sensor for simultaneous detection of multiple cancer-related miRNAs,” Nanoscale 8(39), 17365–17373 (2016).
[Crossref]
[PubMed]
Y. Chen, Y. Zhang, F. Pan, J. Liu, K. Wang, C. Zhang, S. Cheng, L. Lu, W. Zhang, Z. Zhang, X. Zhi, Q. Zhang, G. Alfranca, J. M. de la Fuente, D. Chen, and D. Cui, “Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons,” ACS Nano 10(9), 8169–8179 (2016).
[Crossref]
[PubMed]
C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref]
[PubMed]
Y. Pan, X. Guo, J. Zhu, X. Wang, H. Zhang, Y. Kang, T. Wu, and Y. Du, “A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides,” Mikrochim. Acta 182(9–10), 1775–1782 (2015).
[Crossref]
J. Li, H. An, J. Zhu, and J. Zhao, “Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition,” Appl. Surf. Sci. 347, 856–860 (2015).
[Crossref]
Y. Du, Y. Zhao, Y. Qu, C.-H. Chen, C.-M. Chen, C.-H. Chuang, and Y. Zhu, “Enhanced light-matter interaction of graphene-gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(23), 4683–4691 (2014).
[Crossref]
B. Saute, R. Premasiri, L. Ziegler, and R. Narayanan, “Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides,” Analyst (Lond.) 137(21), 5082–5087 (2012).
[Crossref]
[PubMed]