Abstract

In this paper, we propose and numerically demonstrate a new way to realize superfocusing of terahertz waves via the spoof surface plasmons (SSP). With the assist of a modified subwavelength metallic grating, a near-field rapid oscillation can be formed, originating from the Fabry–Perot resonances due to the reflection of SSP waves at terminations. We show that the field pattern of oscillation on textured metallic surface can be engineered by adjusting groove width and grating number. This produces a desired modulation of phase and amplitude for the radiationless electromagnetic interference (REI) focusing. The effective focusing depth through the corrugated metal is evaluated by the full-width-half-maximum (FWHM) beamwidth. At the situation of third-order Fabry–Perot resonance, the FWMH reaches up to 0.069λ at a distance of 0.1λ, improving the beamwidth by more than 540% compared with a single slit. The FWHM is optimized to 0.06λ as the order of Fabry–Perot resonance becomes seven, leading to the superfocusing metric of 1.67. On the basis of this, we further show the focusing ability can be held on the ultra-thin metallic grating. Two-dimensional subwavelength focusing behavior is also numerically verified. Our study may extend the working distance of sensing and super-resolution imaging devices at terahertz frequency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

21 August 2018: A typographical correction was made to the author listing.


OSA Recommended Articles
High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering

Li-Zheng Yin, Tie-Jun Huang, Feng-Yuan Han, Jiang-Yu Liu, Di Wang, and Pu-Kun Liu
Opt. Express 27(13) 18928-18939 (2019)

Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency

Zhenyu Zhao, Yana Chen, Zhidong Gu, and Wangzhou Shi
Opt. Mater. Express 8(8) 2345-2354 (2018)

Terahertz spoof plasmonic coaxial microcavity

Zaihe Yu, Zhen Gao, Zhengyong Song, and Zhuoyuan Wang
Appl. Opt. 53(6) 1118-1123 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. F. Glotin, J. M. Ortega, and R. Prazeres, “Local terahertz microspectroscopy with λ/100 spatial resolution,” Opt. Lett. 38(24), 5319–5322 (2013).
    [Crossref] [PubMed]
  3. O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
    [Crossref]
  4. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18(9), 9643–9650 (2010).
    [Crossref] [PubMed]
  5. C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express 18(5), 4838–4844 (2010).
    [Crossref] [PubMed]
  6. C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011).
    [Crossref]
  7. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
    [Crossref] [PubMed]
  8. H. H. Tang and P. K. Liu, “Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform,” Opt. Express 23(18), 23613–23623 (2015).
    [Crossref] [PubMed]
  9. H. H. Tang and P. K. Liu, “Terahertz metalenses for evanescent wave focusing and super-resolution imaging,” J. Electromagnet. Wave 29(13), 1776–1784 (2015).
    [Crossref]
  10. C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
    [Crossref] [PubMed]
  11. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317(5840), 927–929 (2007).
    [Crossref] [PubMed]
  12. R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
    [Crossref] [PubMed]
  13. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
    [Crossref] [PubMed]
  14. M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
    [Crossref]
  15. M. F. Imani and A. Grbic, “Generating evanescent Bessel beams using near-field plates,” IEEE Trans. Antenn. Propag. 60(7), 3155–3164 (2012).
    [Crossref]
  16. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
    [Crossref] [PubMed]
  17. Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
    [Crossref] [PubMed]
  18. Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
    [Crossref]
  19. S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
    [Crossref]
  20. M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
    [Crossref] [PubMed]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  22. Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
    [Crossref] [PubMed]
  23. Z. Yu, Z. Gao, Z. Song, and Z. Wang, “Terahertz spoof plasmonic coaxial microcavity,” Appl. Opt. 53(6), 1118–1123 (2014).
    [Crossref] [PubMed]
  24. L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
    [Crossref] [PubMed]
  25. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  26. H. H. Tang, Y. Tan, and P. K. Liu, “Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons,” Sci. Rep. 6(1), 33496 (2016).
    [Crossref] [PubMed]
  27. H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
    [Crossref]
  28. H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
    [Crossref]
  29. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [Crossref] [PubMed]
  30. B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
    [Crossref] [PubMed]
  31. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref] [PubMed]
  32. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref] [PubMed]
  33. L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
    [Crossref]
  34. D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  35. Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
    [Crossref] [PubMed]
  36. X. Chen and W. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
    [Crossref] [PubMed]
  37. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  38. Z. Song, Q. He, S. Xiao, S. Xiao, and L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012).
    [Crossref]
  39. H. H. Tang and P. K. Liu, “Terahertz far-field superresolution imaging through spoof surface plasmons illumination,” Opt. Lett. 40(24), 5822–5825 (2015).
    [Crossref] [PubMed]
  40. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11(12), 125702 (2009).
    [Crossref]
  41. R. Gordon, “Limits for superfocusing with finite evanescent wave amplification,” Opt. Lett. 37(5), 912–914 (2012).
    [Crossref] [PubMed]
  42. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  43. S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
    [Crossref]

2018 (1)

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

2017 (3)

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[Crossref] [PubMed]

H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

X. Chen and W. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref] [PubMed]

2016 (4)

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

H. H. Tang, Y. Tan, and P. K. Liu, “Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons,” Sci. Rep. 6(1), 33496 (2016).
[Crossref] [PubMed]

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (2)

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Z. Yu, Z. Gao, Z. Song, and Z. Wang, “Terahertz spoof plasmonic coaxial microcavity,” Appl. Opt. 53(6), 1118–1123 (2014).
[Crossref] [PubMed]

2013 (4)

Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref] [PubMed]

F. Glotin, J. M. Ortega, and R. Prazeres, “Local terahertz microspectroscopy with λ/100 spatial resolution,” Opt. Lett. 38(24), 5319–5322 (2013).
[Crossref] [PubMed]

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

2012 (3)

R. Gordon, “Limits for superfocusing with finite evanescent wave amplification,” Opt. Lett. 37(5), 912–914 (2012).
[Crossref] [PubMed]

Z. Song, Q. He, S. Xiao, S. Xiao, and L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012).
[Crossref]

M. F. Imani and A. Grbic, “Generating evanescent Bessel beams using near-field plates,” IEEE Trans. Antenn. Propag. 60(7), 3155–3164 (2012).
[Crossref]

2011 (1)

C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011).
[Crossref]

2010 (5)

2009 (4)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref] [PubMed]

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[Crossref] [PubMed]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11(12), 125702 (2009).
[Crossref]

2008 (3)

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[Crossref] [PubMed]

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[Crossref] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref] [PubMed]

2007 (1)

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317(5840), 927–929 (2007).
[Crossref] [PubMed]

2006 (2)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

2005 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2001 (1)

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Agrawal, A.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Chen, C.

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

Chen, S.

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Chen, X.

X. Chen and W. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref] [PubMed]

Chu, Q.

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Cui, T. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Eleftheriades, G. V.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[Crossref] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[Crossref] [PubMed]

Escobar, M. A.

C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011).
[Crossref]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Fan, W.

X. Chen and W. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref] [PubMed]

Federici, J. F.

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

Fernandez-Dominguez, A. I.

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Gao, Z.

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11(12), 125702 (2009).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Glotin, F.

Gordon, R.

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

R. Gordon, “Limits for superfocusing with finite evanescent wave amplification,” Opt. Lett. 37(5), 912–914 (2012).
[Crossref] [PubMed]

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref] [PubMed]

Grbic, A.

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

M. F. Imani and A. Grbic, “Generating evanescent Bessel beams using near-field plates,” IEEE Trans. Antenn. Propag. 60(7), 3155–3164 (2012).
[Crossref]

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[Crossref] [PubMed]

Gu, C.

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

Han, Z.

Hao, J.

He, Q.

Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref] [PubMed]

Z. Song, Q. He, S. Xiao, S. Xiao, and L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012).
[Crossref]

Helmy, A. S.

Hess, O.

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Hsu, J. W. P.

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

Huang, B.

H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Huang, T. J.

H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Imani, M. F.

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

M. F. Imani and A. Grbic, “Generating evanescent Bessel beams using near-field plates,” IEEE Trans. Antenn. Propag. 60(7), 3155–3164 (2012).
[Crossref]

Jiang, L.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[Crossref] [PubMed]

Jin, S.

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Kim, J. E.

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kim, K. J.

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kim, S. H.

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Lee, M.

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Li, X.

Li, Z.

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Liu, L.

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Liu, N.

Liu, P. K.

H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

H. H. Tang, Y. Tan, and P. K. Liu, “Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons,” Sci. Rep. 6(1), 33496 (2016).
[Crossref] [PubMed]

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

H. H. Tang and P. K. Liu, “Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform,” Opt. Express 23(18), 23613–23623 (2015).
[Crossref] [PubMed]

H. H. Tang and P. K. Liu, “Terahertz metalenses for evanescent wave focusing and super-resolution imaging,” J. Electromagnet. Wave 29(13), 1776–1784 (2015).
[Crossref]

H. H. Tang and P. K. Liu, “Terahertz far-field superresolution imaging through spoof surface plasmons illumination,” Opt. Lett. 40(24), 5822–5825 (2015).
[Crossref] [PubMed]

Liu, Q. H.

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[Crossref] [PubMed]

Liu, Z.

C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011).
[Crossref]

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[Crossref] [PubMed]

C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express 18(5), 4838–4844 (2010).
[Crossref] [PubMed]

Luo, X.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Ma, C.

C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011).
[Crossref]

C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express 18(5), 4838–4844 (2010).
[Crossref] [PubMed]

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[Crossref] [PubMed]

Ma, S.

Ma, T. J.

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Markley, L.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[Crossref] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[Crossref] [PubMed]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Martín-Cano, D.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11(12), 125702 (2009).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mendis, R.

Merlin, R.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[Crossref] [PubMed]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317(5840), 927–929 (2007).
[Crossref] [PubMed]

Mitrofanov, O.

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

Mittleman, D. M.

Moreno, E.

Nahata, A.

Nesterov, M. L.

Nikitin, A. Y.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11(12), 125702 (2009).
[Crossref]

Ning, P.

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

Oh, S. S.

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Ortega, J. M.

Park, H. Y.

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pfeiffer, L. N.

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

Prazeres, R.

Pu, M.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Qiu, M.

Shen, X.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Song, M.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Song, Z.

Tan, Y.

H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

H. H. Tang, Y. Tan, and P. K. Liu, “Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons,” Sci. Rep. 6(1), 33496 (2016).
[Crossref] [PubMed]

Tang, H. H.

H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

H. H. Tang, Y. Tan, and P. K. Liu, “Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons,” Sci. Rep. 6(1), 33496 (2016).
[Crossref] [PubMed]

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

H. H. Tang and P. K. Liu, “Terahertz metalenses for evanescent wave focusing and super-resolution imaging,” J. Electromagnet. Wave 29(13), 1776–1784 (2015).
[Crossref]

H. H. Tang and P. K. Liu, “Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform,” Opt. Express 23(18), 23613–23623 (2015).
[Crossref] [PubMed]

H. H. Tang and P. K. Liu, “Terahertz far-field superresolution imaging through spoof surface plasmons illumination,” Opt. Lett. 40(24), 5822–5825 (2015).
[Crossref] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Wang, C.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[Crossref] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[Crossref] [PubMed]

Wang, Z.

West, K. W.

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

Wong, A. M. H.

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[Crossref] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[Crossref] [PubMed]

Wynn, J. D.

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

Xiao, Q. X.

Xiao, S.

Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref] [PubMed]

Z. Song, Q. He, S. Xiao, S. Xiao, and L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012).
[Crossref]

Z. Song, Q. He, S. Xiao, S. Xiao, and L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012).
[Crossref]

Xiao, Y.

Xu, B.

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

Xu, J.

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

Yang, B. J.

Ye, L.

Yu, H.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Yu, Z.

Zhan, H.

Zhang, W.

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[Crossref] [PubMed]

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zhao, Z.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Zhou, L.

Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref] [PubMed]

Z. Song, Q. He, S. Xiao, S. Xiao, and L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012).
[Crossref]

Zhou, Y. J.

Zhu, W.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[Crossref] [PubMed]

O. Mitrofanov, M. Lee, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, J. D. Wynn, and J. F. Federici, “Terahertz pulse propagation through small apertures,” Appl. Phys. Lett. 79(7), 907–909 (2001).
[Crossref]

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

Z. Song, Q. He, S. Xiao, S. Xiao, and L. Zhou, “Making a continuous metal film transparent via scattering cancellations,” Appl. Phys. Lett. 101(18), 181110 (2012).
[Crossref]

IEEE Photonics J. (1)

H. H. Tang, B. Huang, T. J. Huang, Y. Tan, and P. K. Liu, “Efficient Waveguide Mode Conversions by Spoof Surface Plasmon Polaritons at Terahertz Frequencies,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

M. F. Imani and A. Grbic, “Planar near-field plates,” IEEE Trans. Antenn. Propag. 61(11), 5425–5434 (2013).
[Crossref]

M. F. Imani and A. Grbic, “Generating evanescent Bessel beams using near-field plates,” IEEE Trans. Antenn. Propag. 60(7), 3155–3164 (2012).
[Crossref]

J. Electromagnet. Wave (1)

H. H. Tang and P. K. Liu, “Terahertz metalenses for evanescent wave focusing and super-resolution imaging,” J. Electromagnet. Wave 29(13), 1776–1784 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A, Pure Appl. Opt. 11(12), 125702 (2009).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Mater. Lett. (1)

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Nanoscale (1)

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref] [PubMed]

Opt. Express (9)

Z. Song, X. Li, J. Hao, S. Xiao, M. Qiu, Q. He, S. Ma, and L. Zhou, “Tailor the surface-wave properties of a plasmonic metal by a metamaterial capping,” Opt. Express 21(15), 18178–18187 (2013).
[Crossref] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref] [PubMed]

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17(15), 12351–12361 (2009).
[Crossref] [PubMed]

D. Martín-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express 18(5), 4838–4844 (2010).
[Crossref] [PubMed]

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18(9), 9643–9650 (2010).
[Crossref] [PubMed]

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
[Crossref] [PubMed]

H. H. Tang and P. K. Liu, “Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform,” Opt. Express 23(18), 23613–23623 (2015).
[Crossref] [PubMed]

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (2)

S. H. Kim, S. S. Oh, K. J. Kim, K. J. Kim, J. E. Kim, H. Y. Park, and O. Hess, “3, and C. S. Kee. “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform properties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011).
[Crossref]

Phys. Rev. Lett. (5)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. Chen, S. Jin, and R. Gordon, “Subdiffraction focusing enabled by a Fano resonance,” Phys. Rev. X 4(3), 031021 (2014).
[Crossref]

Plasmonics (1)

L. Liu, Z. Li, P. Ning, B. Xu, C. Chen, J. Xu, and C. Gu, “Deep-subwavelength guiding and superfocusing of spoof surface plasmon polaritons on helically grooved metal wire,” Plasmonics 11(2), 359–364 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

X. Chen and W. Fan, “Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon,” Sci. Rep. 7(1), 2092 (2017).
[Crossref] [PubMed]

H. H. Tang, Y. Tan, and P. K. Liu, “Near-Field and Far-Field Directional Conversion of Spoof Surface Plasmon Polaritons,” Sci. Rep. 6(1), 33496 (2016).
[Crossref] [PubMed]

Science (4)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008).
[Crossref] [PubMed]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317(5840), 927–929 (2007).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the subwavelength metallic grating. The periodicity, height and width of the grooves are respectively p, h and d. (b) Dispersive curves of fundamental SSP mode for h = 0.29mm, 0.23 mm and 0.17 mm. Other parameters are p = 0.06 mm, a = 0.03 mm. The area marked by pink color is the forbidden band of fundamental SSP mode, related to the case of h = 0.23 mm. (c) and (d) are respectively the magnetic field (Hy) distributions at 0.25 THz and 0.295 THz.
Fig. 2
Fig. 2 (a) Dispersive curves of foundational SSP mode with different groove width (d = 0.01 mm, 0.02 mm, 0.03 mm, 0.04 mm, and 0.05 mm). (b) presents the magnetic field (Hy) distribution as the SSP waves travel along different gratings (The groove width changes as the order of 0.03-0.02-0.03 mm). (c) The amplitude of magnetic field at 0.06 mm away from the grating.
Fig. 3
Fig. 3 (a) The schematic picture of the truncated SSP structure. (b) The EM waves transmission coefficient versus frequency. The inserted pictures are respectively corresponding to the field patterns at the transmission peak and dip. (c) Amplitude pattern of the magnetic field at the transmission dip (at 0.3032 THz). (d) The amplitude distribution of magnetic field at distances of 0.01λ, 0.03λ and 0.05λ.
Fig. 4
Fig. 4 (a) The transmission coefficient of EM waves versus frequency with different groove width (d2 = 28 μm, 26 μm, 24 μm, 22 μm, 20 μm, 18 μm and 16 μm). (b) shows the magnetic field (Hy) distribution, where the central lobe has destructively interference with satellite lobes. (c) The amplitude of magnetic field distribution at 0.3052 THz. (d) Comparison of the focusing behavior between our REI focusing structure and a single slit. The distribution of magnetic field of a single slit is put in the insert.
Fig. 5
Fig. 5 (a) The transmission coefficient of EM waves as function of frequency. The amplitude pattern of magnetic field is put in the insert. (b) The distribution of field intensity at distances of 0.05λ and 0.1λ. (c) The amplitude distribution of magnetic field, which is related to the case of seven central grooves. (d) The intensity profile of seventh-order FP resonance at a distance of 0.1λ. The red solid line and blue dashed line are related to the lossless and lossy cases, respectively.
Fig. 6
Fig. 6 (a) Schematic of the ultra-thin SSP structure with thickness of t patterned on a substrate. The magnetic field patterns on x-y plane (t = 40 μm, 0.1λ away from the grating) is put in the front of grating. (b)-(e) The amplitude of magnetic field distributions at the distance of 0.1λ, which are respectively corresponding to t = 400 μm, 200 μm, 40 μm and 20 μm. (f) The profile of field intensity at the sampling plane along two dimension. This profile is related to the case of t = 20 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin c 2 ( k x n 2 d ) k x n 2 k 0 2 = p d cot ( k 0 h ) k 0
0 L k s s p ( x ) x d x + Φ = m π

Metrics