Abstract

We explain the generation of four wave mixing (FWM) components at the front and back facets of semiconductor optical amplifiers (SOAs) based on the Bragg-scattering from the propagating gratings in the SOAs. We propose a counter-propagating cross-polarized degenerate pumping scheme for the polarization-insensitive conjugate generation, simultaneously in both input and output ports of the SOA for the first time. The corresponding Bragg scattering processes along with the phase matching conditions are described and the detuning performance of the generated conjugate in either port are experimentally validated. Polarization-insensitive phase conjugate generation at both input and output ports of the SOA through Bragg scattering FWM is further demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase-mismatch dependence of the four-wave mixing effect in semiconductor optical amplifiers

O. M. Kharraz, M. J. Connelly, A. S. M. Supa’at, A. F. Abas, M. T. Alresheedi, and M. A. Mahdi
Appl. Opt. 59(1) 77-83 (2020)

Raman enhanced polarization-insensitive wavelength conversion based on two-pump four-wave mixing

Xiaojie Guo and Chester Shu
Opt. Express 24(25) 28648-28658 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Solis-Trapala, T. Inoue, and S. Namiki, “Nearly-ideal optical phase conjugation based nonlinear compensation system,” in “Optical Fiber Communication Conference” (Optical Society of America, 2014), paper W3F.8.
  2. M. A. Al-Khateeb, M. A. Iqbal, M. Tan, A. Ali, M. McCarthy, P. Harper, and A. D. Ellis, “Analysis of the nonlinear kerr effects in optical transmission systems that deploy optical phase conjugation,” Opt. Express 26(3), 3145–3160 (2018).
    [Crossref] [PubMed]
  3. M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid MZI-SOA InGaAs/InP photonic integrated switches,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
    [Crossref]
  4. R. S. Tucker and K. Hinton, “Energy consumption and energy density in optical and electronic signal processing,” IEEE Photon. J. 3(5), 821–833 (2011).
    [Crossref]
  5. J. Lacey, S. Madden, and M. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photon. Technol. Lett. 9(10), 1355–1357 (1997).
    [Crossref]
  6. U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
    [Crossref]
  7. J. P. Lacey, M. A. Summerfield, and S. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16(12), 2419–2427 (1998).
    [Crossref]
  8. K. Inoue, “Spectral inversion with no wavelength shift based on four-wave mixing with orthogonal pump beams,” Opt. Lett. 22(23), 1772–1774 (1997).
    [Crossref]
  9. A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
    [Crossref]
  10. I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
    [Crossref]
  11. C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
    [Crossref]
  12. J. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
    [Crossref]
  13. J. Tang, P. S. Spencer, and K. A. Shore, “Practical scheme for polarization-insensitive and frequency-conversion interval–independent four-wave mixing in semiconductor optical amplifiers,” Opt. Lett. 24(22), 1605–1607 (1999).
    [Crossref]
  14. J. Tang, P. S. Spencer, and K. A. Shore, “Efficient polarization insensitive four-wave mixing using a semiconductor optical amplifier and one pump source in an optical loop,” Appl. Phys. Lett. 75(18), 2710–2712 (1999).
    [Crossref]
  15. J. Tang, P. S. Spencer, and K. A. Shore, “Enhanced performance of polarization-independent four-wave mixing in polarization-sensitive semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13(5), 496–498 (2001).
    [Crossref]
  16. Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39(9), 1123–1128 (2003).
    [Crossref]
  17. S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Simple techniques for highly efficient wavelength conversion with low polarization sensitivity by use of semiconductor optical amplifiers,” J. Opt. Soc. Am. B 21(5), 1023–1031 (2004).
    [Crossref]
  18. Y. Hong, P. S. Spencer, and K. A. Shore, “Wide-band polarization-free wavelength conversion based on four-wave-mixing in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40(2), 152–156 (2004).
    [Crossref]
  19. C. Janer and M. Connelly, “Optical phase conjugation technique using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 47(12), 716–717 (2011).
    [Crossref]
  20. A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
    [Crossref]
  21. D. Méchin, R. Provo, J. Harvey, and C. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14(20), 8995–8999 (2006).
    [Crossref] [PubMed]
  22. H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(2), 109–111 (2011).
    [Crossref]
  23. Y. Zhao, P. Donvalkar, and A. L. Gaeta, “Telecom-to-near-visible frequency translation via Bragg scattering four-wave mixing in a Rb vapor cell,” in “CLEO: Science and Innovations,” (Optical Society of America, 2017), paper JTu5A.32.
  24. Y. Zhao, D. Lombardo, J. Mathews, and I. Agha, “All-optical switching via four-wave mixing Bragg scattering in a silicon platform,” APL Photonics 2(2), 026102 (2017).
    [Crossref]
  25. P. S. Donvalkar, V. Venkataraman, S. Clemmen, K. Saha, and A. L. Gaeta, “Frequency translation via four-wave mixing Bragg scattering in rb filled photonic bandgap fibers,” Opt. Lett. 39(6), 1557–1560 (2014).
    [Crossref] [PubMed]
  26. S. Aneesh, V. Krithika, and D. Venkitesh, “Counter-propagating cross-polarized pumps for efficient conjugate generation using FWM in SOA,” in “Australian Conference on Optical Fibre Technology,” (Optical Society of America, 2016), paper JT4A.16.
  27. B. W. Hakki and T. L. Paoli, “cw degradation at 300° K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113–4119 (1973).
    [Crossref]
  28. G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5(1), 147–159 (1988).
    [Crossref]
  29. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [Crossref]
  30. A. Mecozzi, “Analytical theory of four-wave mixing in semiconductor amplifiers,” Opt. Lett. 19(12), 892–894 (1994).
    [Crossref] [PubMed]
  31. J. Zhou, G. Zheng, and J. Wu, “Constant Modulus Algorithm With Reduced Probability of Singularity Enabled by PDL Mitigation,” J. Lightwave Technol. 35(13), 2685–2694 (2017).
    [Crossref]

2018 (2)

2017 (2)

Y. Zhao, D. Lombardo, J. Mathews, and I. Agha, “All-optical switching via four-wave mixing Bragg scattering in a silicon platform,” APL Photonics 2(2), 026102 (2017).
[Crossref]

J. Zhou, G. Zheng, and J. Wu, “Constant Modulus Algorithm With Reduced Probability of Singularity Enabled by PDL Mitigation,” J. Lightwave Technol. 35(13), 2685–2694 (2017).
[Crossref]

2016 (1)

A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
[Crossref]

2014 (1)

2011 (3)

C. Janer and M. Connelly, “Optical phase conjugation technique using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 47(12), 716–717 (2011).
[Crossref]

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(2), 109–111 (2011).
[Crossref]

R. S. Tucker and K. Hinton, “Energy consumption and energy density in optical and electronic signal processing,” IEEE Photon. J. 3(5), 821–833 (2011).
[Crossref]

2006 (1)

2004 (2)

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Simple techniques for highly efficient wavelength conversion with low polarization sensitivity by use of semiconductor optical amplifiers,” J. Opt. Soc. Am. B 21(5), 1023–1031 (2004).
[Crossref]

Y. Hong, P. S. Spencer, and K. A. Shore, “Wide-band polarization-free wavelength conversion based on four-wave-mixing in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40(2), 152–156 (2004).
[Crossref]

2003 (1)

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39(9), 1123–1128 (2003).
[Crossref]

2001 (1)

J. Tang, P. S. Spencer, and K. A. Shore, “Enhanced performance of polarization-independent four-wave mixing in polarization-sensitive semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13(5), 496–498 (2001).
[Crossref]

1999 (4)

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

J. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Practical scheme for polarization-insensitive and frequency-conversion interval–independent four-wave mixing in semiconductor optical amplifiers,” Opt. Lett. 24(22), 1605–1607 (1999).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Efficient polarization insensitive four-wave mixing using a semiconductor optical amplifier and one pump source in an optical loop,” Appl. Phys. Lett. 75(18), 2710–2712 (1999).
[Crossref]

1998 (4)

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

J. P. Lacey, M. A. Summerfield, and S. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16(12), 2419–2427 (1998).
[Crossref]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

1997 (2)

K. Inoue, “Spectral inversion with no wavelength shift based on four-wave mixing with orthogonal pump beams,” Opt. Lett. 22(23), 1772–1774 (1997).
[Crossref]

J. Lacey, S. Madden, and M. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photon. Technol. Lett. 9(10), 1355–1357 (1997).
[Crossref]

1994 (1)

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

1988 (1)

1973 (1)

B. W. Hakki and T. L. Paoli, “cw degradation at 300° K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113–4119 (1973).
[Crossref]

Agha, I.

Y. Zhao, D. Lombardo, J. Mathews, and I. Agha, “All-optical switching via four-wave mixing Bragg scattering in a silicon platform,” APL Photonics 2(2), 026102 (2017).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5(1), 147–159 (1988).
[Crossref]

Ali, A.

Al-Khateeb, M. A.

Anandarajah, P. M.

A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
[Crossref]

Anchal, A.

A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
[Crossref]

Aneesh, S.

S. Aneesh, V. Krithika, and D. Venkitesh, “Counter-propagating cross-polarized pumps for efficient conjugate generation using FWM in SOA,” in “Australian Conference on Optical Fibre Technology,” (Optical Society of America, 2016), paper JT4A.16.

Bandyopadhyay, S.

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Simple techniques for highly efficient wavelength conversion with low polarization sensitivity by use of semiconductor optical amplifiers,” J. Opt. Soc. Am. B 21(5), 1023–1031 (2004).
[Crossref]

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39(9), 1123–1128 (2003).
[Crossref]

Caroubalos, C.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

Cheng, Q.

M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid MZI-SOA InGaAs/InP photonic integrated switches,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

Clemmen, S.

Connelly, M.

C. Janer and M. Connelly, “Optical phase conjugation technique using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 47(12), 716–717 (2011).
[Crossref]

Contestabile, G.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

D’Ottavi, A.

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Dall’Ara, R.

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Dietrich, E.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

Diez, S.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

Ding, M.

M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid MZI-SOA InGaAs/InP photonic integrated switches,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

Donvalkar, P.

Y. Zhao, P. Donvalkar, and A. L. Gaeta, “Telecom-to-near-visible frequency translation via Bragg scattering four-wave mixing in a Rb vapor cell,” in “CLEO: Science and Innovations,” (Optical Society of America, 2017), paper JTu5A.32.

Donvalkar, P. S.

Eckner, J.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Ehrke, H.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

Ellis, A. D.

Feiste, U.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

Gaeta, A. L.

P. S. Donvalkar, V. Venkataraman, S. Clemmen, K. Saha, and A. L. Gaeta, “Frequency translation via four-wave mixing Bragg scattering in rb filled photonic bandgap fibers,” Opt. Lett. 39(6), 1557–1560 (2014).
[Crossref] [PubMed]

Y. Zhao, P. Donvalkar, and A. L. Gaeta, “Telecom-to-near-visible frequency translation via Bragg scattering four-wave mixing in a Rb vapor cell,” in “CLEO: Science and Innovations,” (Optical Society of America, 2017), paper JTu5A.32.

Girardin, F.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Graziani, L.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Greco, C.

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

Guekos, G.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, “cw degradation at 300° K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113–4119 (1973).
[Crossref]

Harper, P.

Harvey, J.

Hinton, K.

R. S. Tucker and K. Hinton, “Energy consumption and energy density in optical and electronic signal processing,” IEEE Photon. J. 3(5), 821–833 (2011).
[Crossref]

Hong, Y.

Y. Hong, P. S. Spencer, and K. A. Shore, “Wide-band polarization-free wavelength conversion based on four-wave-mixing in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40(2), 152–156 (2004).
[Crossref]

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Simple techniques for highly efficient wavelength conversion with low polarization sensitivity by use of semiconductor optical amplifiers,” J. Opt. Soc. Am. B 21(5), 1023–1031 (2004).
[Crossref]

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39(9), 1123–1128 (2003).
[Crossref]

Inoue, K.

Inoue, T.

K. Solis-Trapala, T. Inoue, and S. Namiki, “Nearly-ideal optical phase conjugation based nonlinear compensation system,” in “Optical Fiber Communication Conference” (Optical Society of America, 2014), paper W3F.8.

Iqbal, M. A.

Janer, C.

C. Janer and M. Connelly, “Optical phase conjugation technique using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 47(12), 716–717 (2011).
[Crossref]

Krithika, V.

S. Aneesh, V. Krithika, and D. Venkitesh, “Counter-propagating cross-polarized pumps for efficient conjugate generation using FWM in SOA,” in “Australian Conference on Optical Fibre Technology,” (Optical Society of America, 2016), paper JT4A.16.

Kumar, K. P.

A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
[Crossref]

Lacey, J.

J. Lacey, S. Madden, and M. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photon. Technol. Lett. 9(10), 1355–1357 (1997).
[Crossref]

Lacey, J. P.

Landais, P.

A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
[Crossref]

Lombardo, D.

Y. Zhao, D. Lombardo, J. Mathews, and I. Agha, “All-optical switching via four-wave mixing Bragg scattering in a silicon platform,” APL Photonics 2(2), 026102 (2017).
[Crossref]

Ludwig, R.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

Madden, S.

J. P. Lacey, M. A. Summerfield, and S. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16(12), 2419–2427 (1998).
[Crossref]

J. Lacey, S. Madden, and M. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photon. Technol. Lett. 9(10), 1355–1357 (1997).
[Crossref]

Martelli, F.

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Mathews, J.

Y. Zhao, D. Lombardo, J. Mathews, and I. Agha, “All-optical switching via four-wave mixing Bragg scattering in a silicon platform,” APL Photonics 2(2), 026102 (2017).
[Crossref]

McCarthy, M.

McGuinness, H.

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(2), 109–111 (2011).
[Crossref]

McKinstrie, C.

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(2), 109–111 (2011).
[Crossref]

D. Méchin, R. Provo, J. Harvey, and C. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14(20), 8995–8999 (2006).
[Crossref] [PubMed]

Méchin, D.

Mecozzi, A.

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

A. Mecozzi, “Analytical theory of four-wave mixing in semiconductor amplifiers,” Opt. Lett. 19(12), 892–894 (1994).
[Crossref] [PubMed]

Namiki, S.

K. Solis-Trapala, T. Inoue, and S. Namiki, “Nearly-ideal optical phase conjugation based nonlinear compensation system,” in “Optical Fiber Communication Conference” (Optical Society of America, 2014), paper W3F.8.

O’Duill, S.

A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
[Crossref]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Paoli, T. L.

B. W. Hakki and T. L. Paoli, “cw degradation at 300° K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113–4119 (1973).
[Crossref]

Penty, R. V.

M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid MZI-SOA InGaAs/InP photonic integrated switches,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

Provo, R.

Radic, S.

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(2), 109–111 (2011).
[Crossref]

Raymer, M.

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(2), 109–111 (2011).
[Crossref]

Razic, D.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

Roditi, E.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

Saha, K.

Shore, K. A.

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Simple techniques for highly efficient wavelength conversion with low polarization sensitivity by use of semiconductor optical amplifiers,” J. Opt. Soc. Am. B 21(5), 1023–1031 (2004).
[Crossref]

Y. Hong, P. S. Spencer, and K. A. Shore, “Wide-band polarization-free wavelength conversion based on four-wave-mixing in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40(2), 152–156 (2004).
[Crossref]

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39(9), 1123–1128 (2003).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Enhanced performance of polarization-independent four-wave mixing in polarization-sensitive semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13(5), 496–498 (2001).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Efficient polarization insensitive four-wave mixing using a semiconductor optical amplifier and one pump source in an optical loop,” Appl. Phys. Lett. 75(18), 2710–2712 (1999).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Practical scheme for polarization-insensitive and frequency-conversion interval–independent four-wave mixing in semiconductor optical amplifiers,” Opt. Lett. 24(22), 1605–1607 (1999).
[Crossref]

J. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[Crossref]

Solis-Trapala, K.

K. Solis-Trapala, T. Inoue, and S. Namiki, “Nearly-ideal optical phase conjugation based nonlinear compensation system,” in “Optical Fiber Communication Conference” (Optical Society of America, 2014), paper W3F.8.

Spano, P.

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

Spencer, P. S.

S. Bandyopadhyay, Y. Hong, P. S. Spencer, and K. A. Shore, “Simple techniques for highly efficient wavelength conversion with low polarization sensitivity by use of semiconductor optical amplifiers,” J. Opt. Soc. Am. B 21(5), 1023–1031 (2004).
[Crossref]

Y. Hong, P. S. Spencer, and K. A. Shore, “Wide-band polarization-free wavelength conversion based on four-wave-mixing in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40(2), 152–156 (2004).
[Crossref]

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39(9), 1123–1128 (2003).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Enhanced performance of polarization-independent four-wave mixing in polarization-sensitive semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13(5), 496–498 (2001).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Practical scheme for polarization-insensitive and frequency-conversion interval–independent four-wave mixing in semiconductor optical amplifiers,” Opt. Lett. 24(22), 1605–1607 (1999).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Efficient polarization insensitive four-wave mixing using a semiconductor optical amplifier and one pump source in an optical loop,” Appl. Phys. Lett. 75(18), 2710–2712 (1999).
[Crossref]

Sphicopoulos, T.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

Summerfield, M.

J. Lacey, S. Madden, and M. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photon. Technol. Lett. 9(10), 1355–1357 (1997).
[Crossref]

Summerfield, M. A.

Syvridis, D.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

Tan, M.

Tang, J.

J. Tang, P. S. Spencer, and K. A. Shore, “Enhanced performance of polarization-independent four-wave mixing in polarization-sensitive semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13(5), 496–498 (2001).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Practical scheme for polarization-insensitive and frequency-conversion interval–independent four-wave mixing in semiconductor optical amplifiers,” Opt. Lett. 24(22), 1605–1607 (1999).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Efficient polarization insensitive four-wave mixing using a semiconductor optical amplifier and one pump source in an optical loop,” Appl. Phys. Lett. 75(18), 2710–2712 (1999).
[Crossref]

J. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[Crossref]

Tomkos, I.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

Tucker, R. S.

R. S. Tucker and K. Hinton, “Energy consumption and energy density in optical and electronic signal processing,” IEEE Photon. J. 3(5), 821–833 (2011).
[Crossref]

Venkataraman, V.

Venkitesh, D.

S. Aneesh, V. Krithika, and D. Venkitesh, “Counter-propagating cross-polarized pumps for efficient conjugate generation using FWM in SOA,” in “Australian Conference on Optical Fibre Technology,” (Optical Society of America, 2016), paper JT4A.16.

Weber, H.

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

White, I. H.

M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid MZI-SOA InGaAs/InP photonic integrated switches,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

Wonfor, A.

M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid MZI-SOA InGaAs/InP photonic integrated switches,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

Wu, J.

Zacharopoulos, I.

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

Zhao, Y.

Y. Zhao, D. Lombardo, J. Mathews, and I. Agha, “All-optical switching via four-wave mixing Bragg scattering in a silicon platform,” APL Photonics 2(2), 026102 (2017).
[Crossref]

Y. Zhao, P. Donvalkar, and A. L. Gaeta, “Telecom-to-near-visible frequency translation via Bragg scattering four-wave mixing in a Rb vapor cell,” in “CLEO: Science and Innovations,” (Optical Society of America, 2017), paper JTu5A.32.

Zheng, G.

Zhou, J.

APL Photonics (1)

Y. Zhao, D. Lombardo, J. Mathews, and I. Agha, “All-optical switching via four-wave mixing Bragg scattering in a silicon platform,” APL Photonics 2(2), 026102 (2017).
[Crossref]

Appl. Phys. Lett. (1)

J. Tang, P. S. Spencer, and K. A. Shore, “Efficient polarization insensitive four-wave mixing using a semiconductor optical amplifier and one pump source in an optical loop,” Appl. Phys. Lett. 75(18), 2710–2712 (1999).
[Crossref]

Electron. Lett. (2)

U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. Ehrke, D. Razic, and H. Weber, “40 gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion,” Electron. Lett. 34(21), 2044–2045 (1998).
[Crossref]

C. Janer and M. Connelly, “Optical phase conjugation technique using four-wave mixing in semiconductor optical amplifier,” Electron. Lett. 47(12), 716–717 (2011).
[Crossref]

IEEE J. Quantum Electron. (3)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Y. Hong, P. S. Spencer, and K. A. Shore, “Wide-band polarization-free wavelength conversion based on four-wave-mixing in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40(2), 152–156 (2004).
[Crossref]

Y. Hong, S. Bandyopadhyay, P. S. Spencer, and K. A. Shore, “Polarization-independent optical spectral inversion without frequency shift using a single semiconductor optical amplifier,” IEEE J. Quantum Electron. 39(9), 1123–1128 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ding, A. Wonfor, Q. Cheng, R. V. Penty, and I. H. White, “Hybrid MZI-SOA InGaAs/InP photonic integrated switches,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

IEEE Photon. J. (1)

R. S. Tucker and K. Hinton, “Energy consumption and energy density in optical and electronic signal processing,” IEEE Photon. J. 3(5), 821–833 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (7)

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(3), 352–354 (1998).
[Crossref]

J. Tang, P. S. Spencer, and K. A. Shore, “Enhanced performance of polarization-independent four-wave mixing in polarization-sensitive semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 13(5), 496–498 (2001).
[Crossref]

C. Greco, F. Martelli, A. D’Ottavi, A. Mecozzi, P. Spano, and R. Dall’Ara, “Frequency-conversion efficiency independent of signal-polarization and conversion-interval using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(6), 656–658 (1999).
[Crossref]

J. Lacey, S. Madden, and M. Summerfield, “Four-channel polarization-insensitive optically transparent wavelength converter,” IEEE Photon. Technol. Lett. 9(10), 1355–1357 (1997).
[Crossref]

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Wavelength translation across 210 nm in the visible using vector Bragg scattering in a birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(2), 109–111 (2011).
[Crossref]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Guekos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10(3), 355–357 (1998).
[Crossref]

J. Tang and K. A. Shore, “A simple scheme for polarization insensitive four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(9), 1123–1125 (1999).
[Crossref]

J. Appl. Phys. (1)

B. W. Hakki and T. L. Paoli, “cw degradation at 300° K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113–4119 (1973).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

A. Anchal, K. P. Kumar, S. O’Duill, P. M. Anandarajah, and P. Landais, “Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier,” Opt. Commun. 369, 106–110 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (3)

Y. Zhao, P. Donvalkar, and A. L. Gaeta, “Telecom-to-near-visible frequency translation via Bragg scattering four-wave mixing in a Rb vapor cell,” in “CLEO: Science and Innovations,” (Optical Society of America, 2017), paper JTu5A.32.

S. Aneesh, V. Krithika, and D. Venkitesh, “Counter-propagating cross-polarized pumps for efficient conjugate generation using FWM in SOA,” in “Australian Conference on Optical Fibre Technology,” (Optical Society of America, 2016), paper JT4A.16.

K. Solis-Trapala, T. Inoue, and S. Namiki, “Nearly-ideal optical phase conjugation based nonlinear compensation system,” in “Optical Fiber Communication Conference” (Optical Society of America, 2014), paper W3F.8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Power spectral density of amplified spontaneous emission spectra observed at the input and output ports of SOA for a drive current of 375 mA. The ASE near 1545 nm is zoomed and shown in inset, (b) Reflectivity spectra of the SOA at both port 1 and port 2 for a drive current of 375 mA
Fig. 2
Fig. 2 Schematic of direction of propagation of moving grating and conditions for idler and conjugate generation at the either ports of the SOA, considering facet reflectivity. Co-propagating signal and pump with ωs > ωp is considered. The reflected frequencies, the generated idler and conjugate due to reflected grating, reflected signal and pumps are shown as broken lines.
Fig. 3
Fig. 3 Forward and backward propagating grating formation and the forbidden (red) and non-forbidden (green) idler/conjugate at port 1 and port 2 of SOA based on phase matching condition for ωs > ωp. The reflected signal and pump from the SOA facets are indicated with the dotted lines
Fig. 4
Fig. 4 Schematic of the experimental setup to study the detuning performance of conjugate at ports 1 and 2 of SOA, with tunable CW signal and orthogonally polarized counter-propagating pumps
Fig. 5
Fig. 5 Conversion efficiency of the conjugate at port 1 and port 2 of the SOA; the detuning region over which the efficiency go below −5 dB is shown in the inset, which can be attributed to the Bragg scattering region.
Fig. 6
Fig. 6 Schematic of the experimental setup to demonstrate polarization-insensitive phase conjugate generation with CW signal and orthogonally polarized counter-propagating pumps
Fig. 7
Fig. 7 Input and output spectra, demonstrating polarization-insensitive phase conjugate generation of CW signal at both port 1 and port 2 of SOA
Fig. 8
Fig. 8 Forward and backward propagating grating formation and the forbidden (red) and non-forbidden (green) idler/conjugate at port 1 and port 2 of SOA based on phase matching condition for ωp > ωs. The reflected signal and pump from the SOA facets are indicated with dotted lines.

Tables (4)

Tables Icon

Table 1 Frequencies generated in each port of SOA with non-zero facet reflectivity; Positive detuning (ωs > ωp); grating due to co-propagating signal and pump. The signal is assumed to have arbitrary polarization. Pump and signal polarization and direction of propagation are indicated in the first column. Frequencies shown in green satisfy phase matching condition

Tables Icon

Table 2 Frequencies generated in each port of SOA with non-zero facet reflectivity; Positive detuning (ωs > ωp); grating due to counter-propagating signal and pump. The signal is assumed to have arbitrary polarization. Frequencies shown in green satisfy phase matching condition

Tables Icon

Table 3 Frequencies generated in each port for cross-polarized and counter propagating pumps in SOA with non-zero facet reflectivity; Negative detuning (ωp > ωs); grating due to co-propagating signal and pump. The signal is assumed to have arbitrary polarization. Frequencies shown in green satisfy phase matching condition

Tables Icon

Table 4 Frequencies generated in each port for cross-polarized and counter propagating pumps in SOA with non-zero facet reflectivity; Negative detuning (ωp > ωs); grating due to counter-propagating signal and pump. The signal is assumed to have arbitrary polarization. Frequencies shown in green satisfy phase matching condition

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R ( % ) = 1 G s [ ( P + ) 1 / 2 ( P ) 1 / 2 ( P + ) 1 / 2 + ( P ) 1 / 2 ] × 100 ,

Metrics