Abstract

A novel particle sizing method based on diffraction glare points is proposed, which is independent of the refractive index of particle. With geometric optics approximation, the relationship between distance of diffraction glare points and particle size is obtained. In analysis of measurement parameters, we find that 4° is the optimal central scattering angle for measuring wide size range particles based on diffraction glare points. With an experimental system at this angle, diffraction glare points of four kinds of standard particles were imaged. The relative deviations between measured and nominal particle size were not greater than 2%, less than that using reflection glare points, demonstrating validity and advantage of the particle sizing method based on distance of diffraction glare points.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous location and size measurement of particles using extended glare-point imaging technique

Lu Qieni, Yu Xiaoxue, Ge Baozhen, and Chen Tingting
Opt. Express 26(2) 1038-1048 (2018)

Multidispersed bubble-size measurements by interferometric particle imaging at scattering angles of 90° and 45°

Hongxia Zhang, Xiaolei Wang, Jinlu Sun, Dagong Jia, and Tiegen Liu
Appl. Opt. 57(36) 10496-10504 (2018)

Sizing fine particles with the phase Doppler interferometric technique

S. V. Sankar, B. J. Weber, D. Y. Kamemoto, and W. D. Bachalo
Appl. Opt. 30(33) 4914-4920 (1991)

References

  • View by:
  • |
  • |
  • |

  1. C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).
    [Crossref]
  2. S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
    [Crossref]
  3. L. Qieni, Y. Xiaoxue, G. Baozhen, and C. Tingting, “Simultaneous location and size measurement of particles using extended glare-point imaging technique,” Opt. Express 26(2), 1038–1048 (2018).
    [Crossref] [PubMed]
  4. S. Dehaeck, J. P. A. J. Van Beeck, and M. L. Riethmuller, “Extended glare point velocimetry and sizing for bubbly flows,” Exp. Fluids 39(2), 407–419 (2005).
    [Crossref]
  5. Y. Zama, M. Kawahashi, and H. Hirahara, “Simultaneous measurement method of size and 3D velocity components of droplets in a spray field illuminated with a thin laser-light sheet,” Meas. Sci. Technol. 16(10), 1977–1986 (2005).
    [Crossref]
  6. R. Meng, B. Ge, Q. Lu, and X. Yu, “Determining the refractive index of particles using glare-point imaging technique,” Rev. Sci. Instrum. 89(4), 043107 (2018).
    [Crossref] [PubMed]
  7. W. Schäfer, C. Tropea, and W. Elsäßer, “Determination of size and refractive index of a single water droplet by using a light source with short coherence length (LED),” in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2010).
  8. S. Arnold, S. Holler, J. H. Li, A. Serpengüzel, W. F. Auffermann, and S. C. Hill, “Aerosol particle microphotography and glare-spot absorption spectroscopy,” Opt. Lett. 20(7), 773–775 (1995).
    [Crossref] [PubMed]
  9. S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets,” Exp. Fluids 47(2), 333–341 (2009).
    [Crossref]
  10. S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
    [Crossref]
  11. C. F. Hess and D. L’Esperance, “Droplet imaging velocimeter and sizer: a two-dimensional technique to measure droplet size,” Exp. Fluids 47(1), 171–182 (2009).
    [Crossref]
  12. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52(2), 116–130 (1962).
    [Crossref] [PubMed]
  13. J. A. Lock and P. Laven, “Mie scattering in the time domain. Part II. The role of diffraction,” J. Opt. Soc. Am. A 28(6), 1096–1106 (2011).
    [Crossref] [PubMed]
  14. W. J. Glantschnig and S. H. Chen, “Light scattering from water droplets in the geometrical optics approximation,” Appl. Opt. 20(14), 2499–2509 (1981).
    [Crossref] [PubMed]
  15. H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(13), 1178–1189 (2009).
    [Crossref]
  16. H. C. van de Hulst and R. T. Wang, “Glare points,” Appl. Opt. 30(33), 4755–4763 (1991).
    [Crossref] [PubMed]
  17. S. Dehaeck and J. P. van Beeck, “Simultaneous determination of bubble diameter and relative refractive index using glare circles,” Appl. Opt. 46(23), 5957–5963 (2007).
    [Crossref] [PubMed]
  18. X. Liu, W. H. Doub, and C. Guo, “Evaluation of droplet velocity and size from nasal spray devices using phase doppler anemometry (pda),” Int. J. Pharm. 388(1-2), 82–87 (2010).
    [Crossref] [PubMed]
  19. C. F. Hess and M. C. P. Wood, “The pulse displacement technique — a single particle counter with a size range larger than 1000: 1,” Particle Particle Systems Characterization 11(1), 107–113 (1994).
    [Crossref]
  20. L. Qieni, “Particle sizing and size distribution measurement of alcohol spray by interferometric particle imaging,” Chin. J. Lasers 38(3), 0308003 (2011).
    [Crossref]

2018 (2)

L. Qieni, Y. Xiaoxue, G. Baozhen, and C. Tingting, “Simultaneous location and size measurement of particles using extended glare-point imaging technique,” Opt. Express 26(2), 1038–1048 (2018).
[Crossref] [PubMed]

R. Meng, B. Ge, Q. Lu, and X. Yu, “Determining the refractive index of particles using glare-point imaging technique,” Rev. Sci. Instrum. 89(4), 043107 (2018).
[Crossref] [PubMed]

2016 (2)

S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
[Crossref]

S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
[Crossref]

2011 (3)

C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).
[Crossref]

J. A. Lock and P. Laven, “Mie scattering in the time domain. Part II. The role of diffraction,” J. Opt. Soc. Am. A 28(6), 1096–1106 (2011).
[Crossref] [PubMed]

L. Qieni, “Particle sizing and size distribution measurement of alcohol spray by interferometric particle imaging,” Chin. J. Lasers 38(3), 0308003 (2011).
[Crossref]

2010 (1)

X. Liu, W. H. Doub, and C. Guo, “Evaluation of droplet velocity and size from nasal spray devices using phase doppler anemometry (pda),” Int. J. Pharm. 388(1-2), 82–87 (2010).
[Crossref] [PubMed]

2009 (3)

S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets,” Exp. Fluids 47(2), 333–341 (2009).
[Crossref]

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(13), 1178–1189 (2009).
[Crossref]

C. F. Hess and D. L’Esperance, “Droplet imaging velocimeter and sizer: a two-dimensional technique to measure droplet size,” Exp. Fluids 47(1), 171–182 (2009).
[Crossref]

2007 (1)

2005 (2)

S. Dehaeck, J. P. A. J. Van Beeck, and M. L. Riethmuller, “Extended glare point velocimetry and sizing for bubbly flows,” Exp. Fluids 39(2), 407–419 (2005).
[Crossref]

Y. Zama, M. Kawahashi, and H. Hirahara, “Simultaneous measurement method of size and 3D velocity components of droplets in a spray field illuminated with a thin laser-light sheet,” Meas. Sci. Technol. 16(10), 1977–1986 (2005).
[Crossref]

1995 (1)

1994 (1)

C. F. Hess and M. C. P. Wood, “The pulse displacement technique — a single particle counter with a size range larger than 1000: 1,” Particle Particle Systems Characterization 11(1), 107–113 (1994).
[Crossref]

1991 (1)

1981 (1)

1962 (1)

Arnold, S.

Auffermann, W. F.

Baozhen, G.

Chen, S. H.

Dehaeck, S.

S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets,” Exp. Fluids 47(2), 333–341 (2009).
[Crossref]

S. Dehaeck and J. P. van Beeck, “Simultaneous determination of bubble diameter and relative refractive index using glare circles,” Appl. Opt. 46(23), 5957–5963 (2007).
[Crossref] [PubMed]

S. Dehaeck, J. P. A. J. Van Beeck, and M. L. Riethmuller, “Extended glare point velocimetry and sizing for bubbly flows,” Exp. Fluids 39(2), 407–419 (2005).
[Crossref]

Doub, W. H.

X. Liu, W. H. Doub, and C. Guo, “Evaluation of droplet velocity and size from nasal spray devices using phase doppler anemometry (pda),” Int. J. Pharm. 388(1-2), 82–87 (2010).
[Crossref] [PubMed]

Elsäßer, W.

W. Schäfer, C. Tropea, and W. Elsäßer, “Determination of size and refractive index of a single water droplet by using a light source with short coherence length (LED),” in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2010).

Ge, B.

R. Meng, B. Ge, Q. Lu, and X. Yu, “Determining the refractive index of particles using glare-point imaging technique,” Rev. Sci. Instrum. 89(4), 043107 (2018).
[Crossref] [PubMed]

Glantschnig, W. J.

Guo, C.

X. Liu, W. H. Doub, and C. Guo, “Evaluation of droplet velocity and size from nasal spray devices using phase doppler anemometry (pda),” Int. J. Pharm. 388(1-2), 82–87 (2010).
[Crossref] [PubMed]

Hess, C. F.

C. F. Hess and D. L’Esperance, “Droplet imaging velocimeter and sizer: a two-dimensional technique to measure droplet size,” Exp. Fluids 47(1), 171–182 (2009).
[Crossref]

C. F. Hess and M. C. P. Wood, “The pulse displacement technique — a single particle counter with a size range larger than 1000: 1,” Particle Particle Systems Characterization 11(1), 107–113 (1994).
[Crossref]

Hill, S. C.

Hirahara, H.

Y. Zama, M. Kawahashi, and H. Hirahara, “Simultaneous measurement method of size and 3D velocity components of droplets in a spray field illuminated with a thin laser-light sheet,” Meas. Sci. Technol. 16(10), 1977–1986 (2005).
[Crossref]

Holler, S.

Hubin, A.

S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets,” Exp. Fluids 47(2), 333–341 (2009).
[Crossref]

Jia, M.

S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
[Crossref]

S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
[Crossref]

Kawahashi, M.

Y. Zama, M. Kawahashi, and H. Hirahara, “Simultaneous measurement method of size and 3D velocity components of droplets in a spray field illuminated with a thin laser-light sheet,” Meas. Sci. Technol. 16(10), 1977–1986 (2005).
[Crossref]

Keller, J. B.

L’Esperance, D.

C. F. Hess and D. L’Esperance, “Droplet imaging velocimeter and sizer: a two-dimensional technique to measure droplet size,” Exp. Fluids 47(1), 171–182 (2009).
[Crossref]

Laven, P.

Li, J. H.

Liu, X.

X. Liu, W. H. Doub, and C. Guo, “Evaluation of droplet velocity and size from nasal spray devices using phase doppler anemometry (pda),” Int. J. Pharm. 388(1-2), 82–87 (2010).
[Crossref] [PubMed]

Lock, J. A.

Lu, Q.

R. Meng, B. Ge, Q. Lu, and X. Yu, “Determining the refractive index of particles using glare-point imaging technique,” Rev. Sci. Instrum. 89(4), 043107 (2018).
[Crossref] [PubMed]

Lü, Q.

S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
[Crossref]

Meng, R.

R. Meng, B. Ge, Q. Lu, and X. Yu, “Determining the refractive index of particles using glare-point imaging technique,” Rev. Sci. Instrum. 89(4), 043107 (2018).
[Crossref] [PubMed]

Qieni, L.

L. Qieni, Y. Xiaoxue, G. Baozhen, and C. Tingting, “Simultaneous location and size measurement of particles using extended glare-point imaging technique,” Opt. Express 26(2), 1038–1048 (2018).
[Crossref] [PubMed]

L. Qieni, “Particle sizing and size distribution measurement of alcohol spray by interferometric particle imaging,” Chin. J. Lasers 38(3), 0308003 (2011).
[Crossref]

Riethmuller, M. L.

S. Dehaeck, J. P. A. J. Van Beeck, and M. L. Riethmuller, “Extended glare point velocimetry and sizing for bubbly flows,” Exp. Fluids 39(2), 407–419 (2005).
[Crossref]

Schäfer, W.

W. Schäfer, C. Tropea, and W. Elsäßer, “Determination of size and refractive index of a single water droplet by using a light source with short coherence length (LED),” in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2010).

Serpengüzel, A.

Shen, J.

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(13), 1178–1189 (2009).
[Crossref]

Shen, S.

S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
[Crossref]

S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
[Crossref]

Sun, K.

S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
[Crossref]

Tingting, C.

Tropea, C.

C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).
[Crossref]

W. Schäfer, C. Tropea, and W. Elsäßer, “Determination of size and refractive index of a single water droplet by using a light source with short coherence length (LED),” in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2010).

van Beeck, J. P.

Van Beeck, J. P. A. J.

S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets,” Exp. Fluids 47(2), 333–341 (2009).
[Crossref]

S. Dehaeck, J. P. A. J. Van Beeck, and M. L. Riethmuller, “Extended glare point velocimetry and sizing for bubbly flows,” Exp. Fluids 39(2), 407–419 (2005).
[Crossref]

van de Hulst, H. C.

Van Parys, H.

S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets,” Exp. Fluids 47(2), 333–341 (2009).
[Crossref]

Wang, R. T.

Wang, T.

S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
[Crossref]

S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
[Crossref]

Wei, Y.

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(13), 1178–1189 (2009).
[Crossref]

Wood, M. C. P.

C. F. Hess and M. C. P. Wood, “The pulse displacement technique — a single particle counter with a size range larger than 1000: 1,” Particle Particle Systems Characterization 11(1), 107–113 (1994).
[Crossref]

Xiaoxue, Y.

Yang, S.

S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
[Crossref]

Yao, Z.

S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
[Crossref]

Yu, H.

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(13), 1178–1189 (2009).
[Crossref]

Yu, X.

R. Meng, B. Ge, Q. Lu, and X. Yu, “Determining the refractive index of particles using glare-point imaging technique,” Rev. Sci. Instrum. 89(4), 043107 (2018).
[Crossref] [PubMed]

Zama, Y.

Y. Zama, M. Kawahashi, and H. Hirahara, “Simultaneous measurement method of size and 3D velocity components of droplets in a spray field illuminated with a thin laser-light sheet,” Meas. Sci. Technol. 16(10), 1977–1986 (2005).
[Crossref]

Annu. Rev. Fluid Mech. (1)

C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).
[Crossref]

Appl. Opt. (3)

At. Sprays (1)

S. Yang, T. Wang, M. Jia, S. Shen, and Z. Yao, “An experimental study on microscopic characteristics of flash boiling spray with extended glare point velocimetry and sizing,” At. Sprays 26(5), 463–482 (2016).
[Crossref]

Chin. J. Lasers (1)

L. Qieni, “Particle sizing and size distribution measurement of alcohol spray by interferometric particle imaging,” Chin. J. Lasers 38(3), 0308003 (2011).
[Crossref]

Exp. Fluids (4)

S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. Van Beeck, “Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets,” Exp. Fluids 47(2), 333–341 (2009).
[Crossref]

C. F. Hess and D. L’Esperance, “Droplet imaging velocimeter and sizer: a two-dimensional technique to measure droplet size,” Exp. Fluids 47(1), 171–182 (2009).
[Crossref]

S. Shen, M. Jia, T. Wang, Q. Lü, and K. Sun, “Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing,” Exp. Fluids 57(4), 56 (2016).
[Crossref]

S. Dehaeck, J. P. A. J. Van Beeck, and M. L. Riethmuller, “Extended glare point velocimetry and sizing for bubbly flows,” Exp. Fluids 39(2), 407–419 (2005).
[Crossref]

Int. J. Pharm. (1)

X. Liu, W. H. Doub, and C. Guo, “Evaluation of droplet velocity and size from nasal spray devices using phase doppler anemometry (pda),” Int. J. Pharm. 388(1-2), 82–87 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(13), 1178–1189 (2009).
[Crossref]

Meas. Sci. Technol. (1)

Y. Zama, M. Kawahashi, and H. Hirahara, “Simultaneous measurement method of size and 3D velocity components of droplets in a spray field illuminated with a thin laser-light sheet,” Meas. Sci. Technol. 16(10), 1977–1986 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Particle Particle Systems Characterization (1)

C. F. Hess and M. C. P. Wood, “The pulse displacement technique — a single particle counter with a size range larger than 1000: 1,” Particle Particle Systems Characterization 11(1), 107–113 (1994).
[Crossref]

Rev. Sci. Instrum. (1)

R. Meng, B. Ge, Q. Lu, and X. Yu, “Determining the refractive index of particles using glare-point imaging technique,” Rev. Sci. Instrum. 89(4), 043107 (2018).
[Crossref] [PubMed]

Other (1)

W. Schäfer, C. Tropea, and W. Elsäßer, “Determination of size and refractive index of a single water droplet by using a light source with short coherence length (LED),” in 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of diffraction glare points.
Fig. 2
Fig. 2 (a) Intensity distributions of diffraction, reflection and first order transmission, (b) Intensity distributions of sum of the three terms and Mie. The parameters are θ0 = 4°, α = 6°, r = s = 100mm, d = 2a = 30μm, λ = 650nm, m = 1.33.
Fig. 3
Fig. 3 Intensity distributions of diffraction, reflection and first order transmission under different central scattering angles of (a) θ0 = 3.1°, (b) θ0 = 4°, (c) θ0 = 5°, (d) θ0 = 10°, with the same aperture angle of α = 6°. The other parameters are r = s = 100mm, d = 2a = 30μm, λ = 650nm, m = 1.33.
Fig. 4
Fig. 4 (a) Variation of glare point intensity with θ0, including diffraction, reflection and first order transmission, (b) Variation of θe with particle size. The parameters are α = 6°, r = s = 100mm, d = 2a = 30μm, λ = 650nm, m = 1.33.
Fig. 5
Fig. 5 Intensity distributions of diffraction, reflection and first order transmission with different aperture angles of (a) α = 3.9°, (b) α = 2°, (c) α = 1°, (d) α = 0.5°, under the same central scattering angle of θ0 = 4°. The other parameters are r = s = 100mm, d = 2a = 30μm, λ = 650nm, m = 1.33.
Fig. 6
Fig. 6 Photo of the experimental system and imaged glare points, including a transmission glare point in the middle and two diffraction glare points at sides.
Fig. 7
Fig. 7 The imaged glare points of large particles
Fig. 8
Fig. 8 (a) Photo of particle sizing system based on two reflection glare points; (b) Corresponding glare point image of 30μm standard PSL particles.

Tables (2)

Tables Icon

Table 1 Nominal and experimental diameters of the four kinds of standard particles, based on distance of diffraction glare points.

Tables Icon

Table 2 Experimental results of 30μm standard PSL particles using reflection and diffraction glare points.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S diff (θ)= 1 θ x+1 2πsinθ [ exp(ixθ+iθ)iexp(ixθiθ) ],
E(w)= r e iσ λs θ 0 b/r θ 0 +b/r S(θ)exp[ ixw(θ θ 0 ) ] dθ,
| E diff (w) | 2 = 2 b 2 (x+1) πλs θ 0 2 sin θ 0 { sin c 2 [ (x+1xw)b/r ] +sin c 2 [ (x+1+xw)b/r ] }.
{ w A' =1+1/x w B' =(1+1/x) ,
L= s r ( d+ λ π ),
α x+1 .
L= 2 2 s r d.

Metrics