Abstract

Metamaterials offer a novel strategy to control wave propagation in different physical fields ranging from acoustic, electromagnetic, and optical waves to static electric and thermal fields. However, fundamental and practical challenges still need to be overcome for multi-physical manipulation, especially for independent control of acoustic and electromagnetic waves simultaneously. In this paper, we propose and experimentally demonstrate a transparent bifunctional metamaterial in which acoustic and electromagnetic waves could be engineered jointly and individually. Specifically, a transparent composite coupled membrane metamaterial is introduced with indium tin oxide (ITO) patterns coated on the top and bottom membranes, giving rise to simultaneous electromagnetic wave dissipation and sound reduction. Our results could help broaden the current research scope for multiple disciplines and pave the way for the development of multi-functional devices in new applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optically transparent metasurface Salisbury screen with wideband microwave absorption

Tianshu Li, Ke Chen, Guowen Ding, Junming Zhao, Tian Jiang, and Yijun Feng
Opt. Express 26(26) 34384-34395 (2018)

Coding metasurface for broadband microwave scattering reduction with optical transparency

Ke Chen, Li Cui, Yijun Feng, Junming Zhao, Tian Jiang, and Bo Zhu
Opt. Express 25(5) 5571-5579 (2017)

Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields

Chuwen Lan, Ke Bi, Xiaojian Fu, Bo Li, and Ji Zhou
Opt. Express 24(20) 23072-23080 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. USPEKHI 10, 509 (1968).
    [Crossref]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  4. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
    [Crossref] [PubMed]
  5. R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
    [Crossref] [PubMed]
  6. S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
    [Crossref] [PubMed]
  7. Y. Zeng, Q. Wu, and D. H. Werner, “Electrostatic theory for designing lossless negative permittivity metamaterials,” Opt. Lett. 35(9), 1431–1433 (2010).
    [Crossref] [PubMed]
  8. T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
    [Crossref] [PubMed]
  9. M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
    [Crossref]
  10. Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
    [Crossref] [PubMed]
  11. J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
    [Crossref] [PubMed]
  12. Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
    [Crossref] [PubMed]
  13. C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
    [Crossref]
  14. C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
    [Crossref] [PubMed]
  15. S. Zhong, L. Wu, T. Liu, J. Huang, W. Jiang, and Y. Ma, “Transparent transmission-selective radar-infrared bi-stealth structure,” Opt. Express 26(13), 16466–16476 (2018).
    [Crossref] [PubMed]
  16. Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
    [Crossref] [PubMed]
  17. A. Allam, A. Elsabbagh, and W. Akl, “Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density,” J. Acoust. Soc. Am. 140(5), 3607–3618 (2016).
    [Crossref] [PubMed]
  18. T. Y. Huang, C. Shen, and Y. Jing, “On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached,” J. Acoust. Soc. Am. 140(2), 908–916 (2016).
    [Crossref] [PubMed]
  19. Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
    [Crossref]
  20. L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
    [Crossref]
  21. N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
    [Crossref]
  22. X. Wang, H. Zhao, X. Luo, and Z. Huang, “Membrane-constrained acoustic metamaterials for low frequency sound insulation,” Appl. Phys. Lett. 108(4), 041905 (2016).
    [Crossref]
  23. J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
    [Crossref]
  24. C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
    [Crossref] [PubMed]
  25. Y. Jing, J. Xu, and N. X. Fang, “Numerical study of a near-zero-index acoustic metamaterial,” Phys. Lett. A 376(45), 2834–2837 (2012).
    [Crossref]
  26. C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
    [Crossref]
  27. Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
    [Crossref]
  28. J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
    [Crossref] [PubMed]
  29. D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
    [Crossref]
  30. M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
    [Crossref] [PubMed]
  31. J. S. Chen, Y. B. Chen, H. W. Chen, and Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater. Res. Express 3(10), 105801 (2016).
    [Crossref]
  32. N. Zhou, H. Chen, J. Li, and L. Chen, “Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles,” Microchimica Acta 180(5–6), 493–499 (2013).
    [Crossref]
  33. A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
    [Crossref] [PubMed]
  34. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
    [Crossref]
  35. C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
    [Crossref]
  36. S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
    [Crossref]
  37. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  38. K. M. Ho, Z. Yang, X. X. Zhang, and P. Sheng, “Measurements of sound transmission through panels of locally resonant materials between impedance tubes,” Appl. Acoust. 66(7), 751–765 (2005).
    [Crossref]

2018 (1)

2017 (2)

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

2016 (7)

J. S. Chen, Y. B. Chen, H. W. Chen, and Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater. Res. Express 3(10), 105801 (2016).
[Crossref]

A. Allam, A. Elsabbagh, and W. Akl, “Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density,” J. Acoust. Soc. Am. 140(5), 3607–3618 (2016).
[Crossref] [PubMed]

T. Y. Huang, C. Shen, and Y. Jing, “On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached,” J. Acoust. Soc. Am. 140(2), 908–916 (2016).
[Crossref] [PubMed]

X. Wang, H. Zhao, X. Luo, and Z. Huang, “Membrane-constrained acoustic metamaterials for low frequency sound insulation,” Appl. Phys. Lett. 108(4), 041905 (2016).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref] [PubMed]

2015 (6)

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
[Crossref]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

2014 (5)

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
[Crossref]

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
[Crossref] [PubMed]

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref] [PubMed]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

2013 (3)

N. Zhou, H. Chen, J. Li, and L. Chen, “Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles,” Microchimica Acta 180(5–6), 493–499 (2013).
[Crossref]

A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
[Crossref] [PubMed]

2012 (3)

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

Y. Jing, J. Xu, and N. X. Fang, “Numerical study of a near-zero-index acoustic metamaterial,” Phys. Lett. A 376(45), 2834–2837 (2012).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

2010 (3)

Y. Zeng, Q. Wu, and D. H. Werner, “Electrostatic theory for designing lossless negative permittivity metamaterials,” Opt. Lett. 35(9), 1431–1433 (2010).
[Crossref] [PubMed]

C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
[Crossref]

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
[Crossref]

2009 (1)

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
[Crossref]

2008 (1)

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
[Crossref] [PubMed]

2005 (1)

K. M. Ho, Z. Yang, X. X. Zhang, and P. Sheng, “Measurements of sound transmission through panels of locally resonant materials between impedance tubes,” Appl. Acoust. 66(7), 751–765 (2005).
[Crossref]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. USPEKHI 10, 509 (1968).
[Crossref]

Abdeddaim, R.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Akl, W.

A. Allam, A. Elsabbagh, and W. Akl, “Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density,” J. Acoust. Soc. Am. 140(5), 3607–3618 (2016).
[Crossref] [PubMed]

Allam, A.

A. Allam, A. Elsabbagh, and W. Akl, “Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density,” J. Acoust. Soc. Am. 140(5), 3607–3618 (2016).
[Crossref] [PubMed]

Bai, X.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref] [PubMed]

Bi, K.

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref] [PubMed]

Cao, J.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Castaldi, G.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Chan, C. T.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Chan, N. H.

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
[Crossref]

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
[Crossref] [PubMed]

Chang, C. M.

C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
[Crossref]

Chen, H.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

N. Zhou, H. Chen, J. Li, and L. Chen, “Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles,” Microchimica Acta 180(5–6), 493–499 (2013).
[Crossref]

Chen, H. W.

J. S. Chen, Y. B. Chen, H. W. Chen, and Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater. Res. Express 3(10), 105801 (2016).
[Crossref]

Chen, J. S.

J. S. Chen, Y. B. Chen, H. W. Chen, and Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater. Res. Express 3(10), 105801 (2016).
[Crossref]

Chen, L.

N. Zhou, H. Chen, J. Li, and L. Chen, “Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles,” Microchimica Acta 180(5–6), 493–499 (2013).
[Crossref]

Chen, Y. B.

J. S. Chen, Y. B. Chen, H. W. Chen, and Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater. Res. Express 3(10), 105801 (2016).
[Crossref]

Chen, Z.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Cheng, Y.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Cui, T. J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Cummer, S. A.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Dai, H. M.

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
[Crossref]

Ding, J.

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

Elsabbagh, A.

A. Allam, A. Elsabbagh, and W. Akl, “Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density,” J. Acoust. Soc. Am. 140(5), 3607–3618 (2016).
[Crossref] [PubMed]

Enoch, S.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Fan, L.

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

Fang, N.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Fang, N. X.

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
[Crossref]

Y. Jing, J. Xu, and N. X. Fang, “Numerical study of a near-zero-index acoustic metamaterial,” Phys. Lett. A 376(45), 2834–2837 (2012).
[Crossref]

Farhat, M.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Fu, X.

Galdi, V.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Gao, Z.

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

Geffrin, J. M.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Georget, E.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Gu, Y.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Guan, J.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Guenneau, S.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Han, T.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref] [PubMed]

He, S.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Ho, K. M.

K. M. Ho, Z. Yang, X. X. Zhang, and P. Sheng, “Measurements of sound transmission through panels of locally resonant materials between impedance tubes,” Appl. Acoust. 66(7), 751–765 (2005).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Hu, D.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Hu, G. K.

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
[Crossref] [PubMed]

Huang, G. L.

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
[Crossref] [PubMed]

Huang, J.

Huang, T. Y.

T. Y. Huang, C. Shen, and Y. Jing, “On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached,” J. Acoust. Soc. Am. 140(2), 908–916 (2016).
[Crossref] [PubMed]

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

Huang, Z.

X. Wang, H. Zhao, X. Luo, and Z. Huang, “Membrane-constrained acoustic metamaterials for low frequency sound insulation,” Appl. Phys. Lett. 108(4), 041905 (2016).
[Crossref]

Jiang, W.

Jiang, X.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Jing, Y.

T. Y. Huang, C. Shen, and Y. Jing, “On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached,” J. Acoust. Soc. Am. 140(2), 908–916 (2016).
[Crossref] [PubMed]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
[Crossref]

Y. Jing, J. Xu, and N. X. Fang, “Numerical study of a near-zero-index acoustic metamaterial,” Phys. Lett. A 376(45), 2834–2837 (2012).
[Crossref]

Jing, Y. A.

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

Kim, A.

A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Kim, C. H.

A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Kim, C. K.

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
[Crossref]

Lan, C.

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref] [PubMed]

Lee, K. J. B.

J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
[Crossref]

Lee, S. H.

J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
[Crossref]

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
[Crossref]

Li, B.

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref] [PubMed]

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref] [PubMed]

Li, J.

N. Zhou, H. Chen, J. Li, and L. Chen, “Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles,” Microchimica Acta 180(5–6), 493–499 (2013).
[Crossref]

Li, Q.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Li, W.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Li, X. J.

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

Liu, T.

Liu, X.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Liu, X. N.

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Luo, X.

X. Wang, H. Zhao, X. Luo, and Z. Huang, “Membrane-constrained acoustic metamaterials for low frequency sound insulation,” Appl. Phys. Lett. 108(4), 041905 (2016).
[Crossref]

Ma, G.

M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
[Crossref] [PubMed]

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

Ma, G. C.

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
[Crossref]

Ma, Y.

S. Zhong, L. Wu, T. Liu, J. Huang, W. Jiang, and Y. Ma, “Transparent transmission-selective radar-infrared bi-stealth structure,” Opt. Express 26(13), 16466–16476 (2018).
[Crossref] [PubMed]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Mao, Y.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

McKnight, G.

C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
[Crossref]

Mei, J.

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
[Crossref] [PubMed]

Moccia, M.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Moon, J.

A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Naify, C. J.

C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
[Crossref]

Narayana, S.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nutt, S.

C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Park, C. M.

J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
[Crossref]

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
[Crossref]

Park, J. J.

J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Qiu, C. W.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref] [PubMed]

Raza, M.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Sabouroux, P.

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Sato, Y.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

Savo, S.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Seo, Y. M.

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
[Crossref]

Shen, C.

T. Y. Huang, C. Shen, and Y. Jing, “On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached,” J. Acoust. Soc. Am. 140(2), 908–916 (2016).
[Crossref] [PubMed]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
[Crossref]

Sheng, P.

M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
[Crossref] [PubMed]

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
[Crossref]

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
[Crossref] [PubMed]

K. M. Ho, Z. Yang, X. X. Zhang, and P. Sheng, “Measurements of sound transmission through panels of locally resonant materials between impedance tubes,” Appl. Acoust. 66(7), 751–765 (2005).
[Crossref]

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Sui, N.

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Sun, C. T.

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
[Crossref] [PubMed]

Thong, J. T.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. USPEKHI 10, 509 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, H.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Wang, J.

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

Wang, W.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Wang, X.

X. Wang, H. Zhao, X. Luo, and Z. Huang, “Membrane-constrained acoustic metamaterials for low frequency sound insulation,” Appl. Phys. Lett. 108(4), 041905 (2016).
[Crossref]

Wang, Y.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Wang, Z. G.

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
[Crossref]

Wen, W.

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

Werner, D. H.

Won, Y.

A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Woo, K.

A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Wu, L.

Wu, Q.

Wu, T.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Xie, Y.

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

Xu, J.

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
[Crossref]

Y. Jing, J. Xu, and N. X. Fang, “Numerical study of a near-zero-index acoustic metamaterial,” Phys. Lett. A 376(45), 2834–2837 (2012).
[Crossref]

Xu, Z.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Yan, X.

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Yang, M.

M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
[Crossref] [PubMed]

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Yang, Z.

M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
[Crossref] [PubMed]

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
[Crossref]

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
[Crossref] [PubMed]

K. M. Ho, Z. Yang, X. X. Zhang, and P. Sheng, “Measurements of sound transmission through panels of locally resonant materials between impedance tubes,” Appl. Acoust. 66(7), 751–765 (2005).
[Crossref]

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Yeh, Y. C.

J. S. Chen, Y. B. Chen, H. W. Chen, and Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater. Res. Express 3(10), 105801 (2016).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yu, F.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Yuan, F. G.

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

Zeng, Y.

Zhang, C.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhang, H.

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

Zhang, S. Y.

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

Zhang, X.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Zhang, X. X.

K. M. Ho, Z. Yang, X. X. Zhang, and P. Sheng, “Measurements of sound transmission through panels of locally resonant materials between impedance tubes,” Appl. Acoust. 66(7), 751–765 (2005).
[Crossref]

Zhao, H.

X. Wang, H. Zhao, X. Luo, and Z. Huang, “Membrane-constrained acoustic metamaterials for low frequency sound insulation,” Appl. Phys. Lett. 108(4), 041905 (2016).
[Crossref]

Zhao, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhong, S.

Zhou, J.

C. Lan, K. Bi, X. Fu, B. Li, and J. Zhou, “Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields,” Opt. Express 24(20), 23072–23080 (2016).
[Crossref] [PubMed]

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

Zhou, N.

N. Zhou, H. Chen, J. Li, and L. Chen, “Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles,” Microchimica Acta 180(5–6), 493–499 (2013).
[Crossref]

Zhu, R.

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
[Crossref] [PubMed]

Zhu, Y. Y.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

ACS Nano (1)

A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Appl. Acoust. (1)

K. M. Ho, Z. Yang, X. X. Zhang, and P. Sheng, “Measurements of sound transmission through panels of locally resonant materials between impedance tubes,” Appl. Acoust. 66(7), 751–765 (2005).
[Crossref]

Appl. Phys. Lett. (7)

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
[Crossref]

L. Fan, Z. Chen, S. Y. Zhang, J. Ding, X. J. Li, and H. Zhang, “An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
[Crossref]

N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. A. Jing, “A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
[Crossref]

X. Wang, H. Zhao, X. Luo, and Z. Huang, “Membrane-constrained acoustic metamaterials for low frequency sound insulation,” Appl. Phys. Lett. 108(4), 041905 (2016).
[Crossref]

J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
[Crossref]

C. Lan, K. Bi, Z. Gao, B. Li, and J. Zhou, “Achieving bifunctional cloak via combination of passive and active schemes,” Appl. Phys. Lett. 109(20), 201903 (2016).
[Crossref]

J. Acoust. Soc. Am. (2)

A. Allam, A. Elsabbagh, and W. Akl, “Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density,” J. Acoust. Soc. Am. 140(5), 3607–3618 (2016).
[Crossref] [PubMed]

T. Y. Huang, C. Shen, and Y. Jing, “On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached,” J. Acoust. Soc. Am. 140(2), 908–916 (2016).
[Crossref] [PubMed]

J. Appl. Phys. (2)

Y. Gu, Y. Cheng, J. Wang, and X. Liu, “Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
[Crossref]

C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
[Crossref]

Mater. Res. Express (1)

J. S. Chen, Y. B. Chen, H. W. Chen, and Y. C. Yeh, “Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure,” Mater. Res. Express 3(10), 105801 (2016).
[Crossref]

Microchimica Acta (1)

N. Zhou, H. Chen, J. Li, and L. Chen, “Highly sensitive and selective voltammetric detection of mercury (II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles,” Microchimica Acta 180(5–6), 493–499 (2013).
[Crossref]

Nat. Commun. (2)

J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3(1), 756 (2012).
[Crossref] [PubMed]

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5(1), 5510 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Lett. A (2)

Y. Jing, J. Xu, and N. X. Fang, “Numerical study of a near-zero-index acoustic metamaterial,” Phys. Lett. A 376(45), 2834–2837 (2012).
[Crossref]

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 4464–4469 (2009).
[Crossref]

Phys. Rev. Lett. (7)

M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
[Crossref] [PubMed]

C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
[Crossref] [PubMed]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
[Crossref] [PubMed]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Phys. Rev. X (2)

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4(2), 021025 (2014).
[Crossref]

C. Shen, J. Xu, N. X. Fang, and Y. Jing, “Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
[Crossref]

Sci. Rep. (2)

J. Xu, X. Jiang, N. Fang, E. Georget, R. Abdeddaim, J. M. Geffrin, M. Farhat, P. Sabouroux, S. Enoch, and S. Guenneau, “Molding acoustic, electromagnetic and water waves with a single cloak,” Sci. Rep. 5(1), 10678 (2015).
[Crossref] [PubMed]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Science (1)

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Sov. Phys. USPEKHI (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. USPEKHI 10, 509 (1968).
[Crossref]

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Illustration of the CMS metamaterial for simultaneous microwave absorption and sound reduction. (b) Schematic of the CMS metamaterials coated with ITO films and zoomed view of the meta-atom.
Fig. 2
Fig. 2 Performances of the pre-designed CMS metamaterial. (a) Sound transmission loss spectra below 1 kHz. (b) EM wave absorptivity for TE/TM polarized waves at the incident angles from 0° to 45°, respectively. (c) Sound transmission loss spectra from 1 KHz to 10 KHz.
Fig. 3
Fig. 3 Displacements of MR1 and MR2 and the air motions at eigenfrequencies f = 245 Hz (a) (d), 725 Hz (b)(e), and 910Hz (c)(f) respectively. Displacements and the corresponding air motions excited by incident sound wave are also provided at f = 735 Hz (g)(i) and 800 Hz (h)(j) respectively.
Fig. 4
Fig. 4 EM Properties produced by the separated ITO square arrays without rigid frames. (a) Absorptivity of the meta-atom with the different sheet resistance of the top ITO layer at normal incidence of plane wave, and (b) surface currents, (c) electric field and (d) surface loss density on the top of the ITO rings at 9.5 GHz.
Fig. 5
Fig. 5 (a) Dependence of the simulated EM wave absorptivity spectra on the thickness hf, (b) dielectric constant εf of the FR-4 frame at normal incidence. Insets: Orientation of incident wave. (c) STL of the CMS with the increase of the membranes distance hf between MR1 and MR2, and (d) STL of the double-layer membranes with/without ITO.
Fig. 6
Fig. 6 (a) Photograph of the fabricated sample. (b) The impedance tube for the measurement of STL. (c) Test scenario of the absorptivity measurement via the free space method. (d) The simulated (black solid line) and measured (black hollow circles) STL, along with the simulated (blue solid line) and measured (blue hollow circles) absorptivity.

Metrics