Abstract

The thermal cycling process experienced by spacecraft during orbital operation would lead to deterioration of the demodulation performance of fiber Bragg grating (FBG). A new demodulation method based on Fabry-Perot (F-P) filter and hydrogen cyanide (HCN) gas is proposed to improve the performance. The method skillfully utilizes the self-marked HCN absorption lines as absolute wavelength references. In the thermal cycling environment whose temperature ranging from 5°Cto 65°C,the fluctuation of demodulation wavelength reduces to ± 2.6 pm, which is improved by 3.1 times compared with traditional method. The proposed method also shows a good robustness in the cases of weak light source intensity and poor signal-to-noise ratio (SNR) of HCN spectrum.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
FBG wavelength demodulation based on a radio frequency optical true time delay method

Jin Wang, Wanshan Zhu, Chenyuan Ma, and Tong Xu
Opt. Lett. 43(11) 2664-2667 (2018)

A novel fast phase correlation algorithm for peak wavelength detection of fiber Bragg grating sensors

A. Lamberti, S. Vanlanduit, B. De Pauw, and F. Berghmans
Opt. Express 22(6) 7099-7112 (2014)

Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array

Fan Yang, Wenjia Zhang, Shuangxiang Zhao, Qingwen Liu, Jifang Tao, and Zuyuan He
Opt. Express 27(5) 6037-6046 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
    [Crossref]
  2. J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, and P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
    [Crossref] [PubMed]
  3. J. F. Jiang, T. G. Liu, K. Liu, S. Wang, J. D. Yin, B. F. Zhao, J. C. Zhang, L. Y. Song, P. Zhao, F. Wu, and X. Z. Zhang, “Development of optical fiber sensing instrument for aviation and aerospace application.” in 2013 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, (Academic, 2013), 90440, 90440K.
  4. P. Nannipieri, G. Meoni, F. Nesti, E. Mancini, F. Celi, L. Quadrelli, and A. Signorini, “Application of FBG sensors to temperature measurement on board of the REXUS 22 sounding rocket in the framework of the U-PHOS project,” in Metrology for AeroSpace. (IEEE, 2017), 462–467.
  5. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
    [Crossref]
  6. A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
    [Crossref]
  7. M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing,” Aerospace 3(3), 18 (2016).
    [Crossref]
  8. Y. E. Marin, T. Nannipieri, C. J. Oton, and F. D. Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” J. Lightwave Technol. 35(16), 3374–3379 (2017).
    [Crossref]
  9. M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 3(7), 1289–1295 (1995).
    [Crossref]
  10. J. Mei, X. Xiao, and C. Yang, “Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers,” IEEE Photonics Technol. Lett. 27(15), 1585–1588 (2015).
    [Crossref]
  11. W. Sheng, G. D. Peng, Y. Liu, and N. Yang, “An optimized strain demodulation method for PZT driven fiber Fabry–Perot tunable filter,” Opt. Commun. 349, 31–35 (2015).
    [Crossref]
  12. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry - Perot wavelength filter,” Opt. Lett. 18(16), 1370–1372 (1993).
    [Crossref] [PubMed]
  13. C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
    [Crossref]
  14. H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” J. Lightwave Technol. 28(3), 254–261 (2010).
    [Crossref]
  15. S. K. Ibrahim, M. Farnan, and D. M. Karabacak, “Design of a photonic integrated based optical interrogator,” in Photonic Instrumentation Engineering IV (Academic, 2017), paper 101100U.
  16. T. Y. Dai, Y. L. Ju, B. Q. Yao, Y. J. Shen, W. Wang, and Y. Z. Wang, “Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1850–1852 (2012).
    [Crossref] [PubMed]
  17. G. Batts, “Thermal environment in space for engineering applications,” in 32nd Aerospace Sciences Meeting and Exhibit (Academic, 1994), p. 593.
    [Crossref]
  18. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22(8), 1749–1756 (2005).
    [Crossref]
  19. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13(7), 2377–2384 (2005).
    [Crossref] [PubMed]
  20. E. Rivera and D. J. Thomson, “Accurate strain measurements with fiber Bragg sensors and wavelength references,” Smart Mater. Struct. 15(2), 706–708 (2010).
  21. C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
    [Crossref]
  22. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
    [Crossref]
  23. S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260–137 (2005).
  24. S. Tan, P. Berceau, S. Saraf, and J. A. Lipa, “Measuring finesse and gas absorption with Lorentzian recovery spectroscopy,” Opt. Express 25(7), 7645–7656 (2017).
    [Crossref] [PubMed]
  25. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5µm,” Opt. Lett. 19(11), 840–842 (1994).
    [Crossref] [PubMed]
  26. A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems,” Signal Process. 94, 409–420 (2014).
    [Crossref]
  27. L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
    [Crossref]
  28. M. Morozov, D. Damjanovic, and N. Setter, “The nonlinearity and subswitching hysteresis in hard and soft PZT,” J. Eur. Ceram. Soc. 25(12), 2483–2486 (2005).
    [Crossref]

2018 (1)

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

2017 (2)

2016 (1)

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing,” Aerospace 3(3), 18 (2016).
[Crossref]

2015 (2)

J. Mei, X. Xiao, and C. Yang, “Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers,” IEEE Photonics Technol. Lett. 27(15), 1585–1588 (2015).
[Crossref]

W. Sheng, G. D. Peng, Y. Liu, and N. Yang, “An optimized strain demodulation method for PZT driven fiber Fabry–Perot tunable filter,” Opt. Commun. 349, 31–35 (2015).
[Crossref]

2014 (2)

A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems,” Signal Process. 94, 409–420 (2014).
[Crossref]

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

2013 (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

2012 (1)

2011 (2)

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, and P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[Crossref] [PubMed]

A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
[Crossref]

2010 (2)

E. Rivera and D. J. Thomson, “Accurate strain measurements with fiber Bragg sensors and wavelength references,” Smart Mater. Struct. 15(2), 706–708 (2010).

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” J. Lightwave Technol. 28(3), 254–261 (2010).
[Crossref]

2009 (1)

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
[Crossref]

2005 (3)

2001 (1)

C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
[Crossref]

2000 (1)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
[Crossref]

1995 (1)

M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 3(7), 1289–1295 (1995).
[Crossref]

1994 (1)

1993 (1)

Acharya, A.

A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems,” Signal Process. 94, 409–420 (2014).
[Crossref]

André, P.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Antunes, P. F.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Balaban, E.

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
[Crossref]

Bansal, P.

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
[Crossref]

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Batts, G.

G. Batts, “Thermal environment in space for engineering applications,” in 32nd Aerospace Sciences Meeting and Exhibit (Academic, 1994), p. 593.
[Crossref]

Benner, D. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Berceau, P.

Berkoff, T. A.

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Bevenot, X.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
[Crossref]

Blais, S.

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Cao, K.

Chan, C. C.

C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
[Crossref]

Chen, Y.

Clement, M.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
[Crossref]

Curran, S.

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
[Crossref]

Dai, J.

Dai, T. Y.

Damjanovic, D.

M. Morozov, D. Damjanovic, and N. Setter, “The nonlinearity and subswitching hysteresis in hard and soft PZT,” J. Eur. Ceram. Soc. 25(12), 2483–2486 (2005).
[Crossref]

Das, S.

A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems,” Signal Process. 94, 409–420 (2014).
[Crossref]

A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems,” Signal Process. 94, 409–420 (2014).
[Crossref]

Davis, M. A.

M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 3(7), 1289–1295 (1995).
[Crossref]

de Labachelerie, M.

De Natale, P.

Díaz, C. A.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Domingues, M. F.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Ferraro, P.

Fransen, S.

A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
[Crossref]

Frizera-Neto, A.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Gagliardi, G.

Gagnaire, H.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
[Crossref]

Gilbert, S. L.

Goebel, K. F.

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Ho, H. L.

C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
[Crossref]

Jia, Y. W.

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Jiang, J. F.

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Jin, W.

C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
[Crossref]

Ju, Y. L.

Kersey, A. D.

M. A. Davis and A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 3(7), 1289–1295 (1995).
[Crossref]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry - Perot wavelength filter,” Opt. Lett. 18(16), 1370–1372 (1993).
[Crossref] [PubMed]

Kostopoulos, V.

A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
[Crossref]

Liao, H.

Lipa, J. A.

Liu, K.

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Liu, T. G.

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Liu, Y.

W. Sheng, G. D. Peng, Y. Liu, and N. Yang, “An optimized strain demodulation method for PZT driven fiber Fabry–Perot tunable filter,” Opt. Commun. 349, 31–35 (2015).
[Crossref]

Loutas, T.

A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
[Crossref]

Marin, Y. E.

Marques, C. A.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Mei, J.

J. Mei, X. Xiao, and C. Yang, “Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers,” IEEE Photonics Technol. Lett. 27(15), 1585–1588 (2015).
[Crossref]

Morey, W. W.

Morozov, M.

M. Morozov, D. Damjanovic, and N. Setter, “The nonlinearity and subswitching hysteresis in hard and soft PZT,” J. Eur. Ceram. Soc. 25(12), 2483–2486 (2005).
[Crossref]

Nakagawa, K.

Nannipieri, T.

Nicolas, M. J.

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing,” Aerospace 3(3), 18 (2016).
[Crossref]

Ohtsu, M.

Oton, C. J.

Pan, I.

A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems,” Signal Process. 94, 409–420 (2014).
[Crossref]

Panopoulou, A.

A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
[Crossref]

Pasquale, F. D.

Peng, G. D.

W. Sheng, G. D. Peng, Y. Liu, and N. Yang, “An optimized strain demodulation method for PZT driven fiber Fabry–Perot tunable filter,” Opt. Commun. 349, 31–35 (2015).
[Crossref]

Pontes, M. J.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Ribeiro, M. R.

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Richards, W. L.

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing,” Aerospace 3(3), 18 (2016).
[Crossref]

Rivera, E.

E. Rivera and D. J. Thomson, “Accurate strain measurements with fiber Bragg sensors and wavelength references,” Smart Mater. Struct. 15(2), 706–708 (2010).

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Roulias, D.

A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
[Crossref]

Salza, M.

Saraf, S.

Saxena, A.

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
[Crossref]

Setter, N.

M. Morozov, D. Damjanovic, and N. Setter, “The nonlinearity and subswitching hysteresis in hard and soft PZT,” J. Eur. Ceram. Soc. 25(12), 2483–2486 (2005).
[Crossref]

Shen, Y. J.

Sheng, W.

W. Sheng, G. D. Peng, Y. Liu, and N. Yang, “An optimized strain demodulation method for PZT driven fiber Fabry–Perot tunable filter,” Opt. Commun. 349, 31–35 (2015).
[Crossref]

Sullivan, R. W.

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing,” Aerospace 3(3), 18 (2016).
[Crossref]

Swann, W. C.

Tan, S.

Thomson, D. J.

E. Rivera and D. J. Thomson, “Accurate strain measurements with fiber Bragg sensors and wavelength references,” Smart Mater. Struct. 15(2), 706–708 (2010).

Trouillet, A.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
[Crossref]

Veillas, C.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
[Crossref]

Wang, C.

Wang, D. N.

C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
[Crossref]

Wang, T.

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Wang, W.

Wang, Y.

C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
[Crossref]

Wang, Y. Z.

Xia, H.

Xiao, X.

J. Mei, X. Xiao, and C. Yang, “Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers,” IEEE Photonics Technol. Lett. 27(15), 1585–1588 (2015).
[Crossref]

Yang, C.

J. Mei, X. Xiao, and C. Yang, “Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers,” IEEE Photonics Technol. Lett. 27(15), 1585–1588 (2015).
[Crossref]

Yang, M.

Yang, N.

W. Sheng, G. D. Peng, Y. Liu, and N. Yang, “An optimized strain demodulation method for PZT driven fiber Fabry–Perot tunable filter,” Opt. Commun. 349, 31–35 (2015).
[Crossref]

Yao, B. Q.

Yao, J.

Yu, L.

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Zhang, L.

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Zhang, P.

Acta Astronaut. (1)

A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, and V. Kostopoulos, “Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures,” Acta Astronaut. 69(7), 445–457 (2011).
[Crossref]

Aerospace (1)

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing,” Aerospace 3(3), 18 (2016).
[Crossref]

Electron. Lett. (1)

C. C. Chan, W. Jin, H. L. Ho, D. N. Wang, and Y. Wang, “Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references,” Electron. Lett. 37(12), 742–743 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Mei, X. Xiao, and C. Yang, “Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers,” IEEE Photonics Technol. Lett. 27(15), 1585–1588 (2015).
[Crossref]

IEEE Sens. J. (1)

E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling, detection, and disambiguation of sensor faults for aerospace applications,” IEEE Sens. J. 9(12), 1907–1917 (2009).
[Crossref]

J. Eur. Ceram. Soc. (1)

M. Morozov, D. Damjanovic, and N. Setter, “The nonlinearity and subswitching hysteresis in hard and soft PZT,” J. Eur. Ceram. Soc. 25(12), 2483–2486 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, and A. Campargue, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130(11), 4–50 (2013).
[Crossref]

Meas. (1)

C. A. Díaz, C. A. Marques, M. F. Domingues, M. R. Ribeiro, A. Frizera-Neto, M. J. Pontes, P. André, and P. F. Antunes, “A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers,” Meas. 124, 486–493 (2018).
[Crossref]

Opt. Commun. (1)

W. Sheng, G. D. Peng, Y. Liu, and N. Yang, “An optimized strain demodulation method for PZT driven fiber Fabry–Perot tunable filter,” Opt. Commun. 349, 31–35 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Sens. Actuators B Chem. (2)

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1–2), 57–67 (2000).
[Crossref]

L. Yu, T. G. Liu, K. Liu, J. F. Jiang, L. Zhang, Y. W. Jia, and T. Wang, “Development of an intra-cavity gas detection system based on L-band erbium-doped fiber ring laser,” Sens. Actuators B Chem. 193, 356–362 (2014).
[Crossref]

Signal Process. (1)

A. Acharya, S. Das, I. Pan, and S. Das, “Extending the concept of analog Butterworth filter for fractional order systems,” Signal Process. 94, 409–420 (2014).
[Crossref]

Smart Mater. Struct. (1)

E. Rivera and D. J. Thomson, “Accurate strain measurements with fiber Bragg sensors and wavelength references,” Smart Mater. Struct. 15(2), 706–708 (2010).

Other (5)

S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260–137 (2005).

G. Batts, “Thermal environment in space for engineering applications,” in 32nd Aerospace Sciences Meeting and Exhibit (Academic, 1994), p. 593.
[Crossref]

S. K. Ibrahim, M. Farnan, and D. M. Karabacak, “Design of a photonic integrated based optical interrogator,” in Photonic Instrumentation Engineering IV (Academic, 2017), paper 101100U.

J. F. Jiang, T. G. Liu, K. Liu, S. Wang, J. D. Yin, B. F. Zhao, J. C. Zhang, L. Y. Song, P. Zhao, F. Wu, and X. Z. Zhang, “Development of optical fiber sensing instrument for aviation and aerospace application.” in 2013 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. International Society for Optics and Photonics, (Academic, 2013), 90440, 90440K.

P. Nannipieri, G. Meoni, F. Nesti, E. Mancini, F. Celi, L. Quadrelli, and A. Signorini, “Application of FBG sensors to temperature measurement on board of the REXUS 22 sounding rocket in the framework of the U-PHOS project,” in Metrology for AeroSpace. (IEEE, 2017), 462–467.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Normalized absorption spectrum of HCN gas obtained by scanning a tunable diode laser with 10 MHz linewidth(a), and the wavelength intervals between the absorption line and its adjacent absorption line in short wavelength side(b).
Fig. 2
Fig. 2 Schematic diagram of the FBG demodulation system.
Fig. 3
Fig. 3 The normalized HCN and FBG spectra collected by DAQ(a), and the HCN spectrum after preprocessing(b).
Fig. 4
Fig. 4 Experiment in thermal cycling process: Operating temperature(a), and demodulation results(b).
Fig. 5
Fig. 5 Demodulation results at different operating temperature
Fig. 6
Fig. 6 Demodulation results of different frequencies under increase in operating temperature: Operating temperature(a), 10 Hz(b), 50 Hz(c), 100 Hz(d), and 200 Hz(e).
Fig. 7
Fig. 7 Demodulation precision of 7 FBGs and normalized absorption spectrum of HCN gas

Tables (1)

Tables Icon

Table 1 Demodulation results under different SNRs of HCN absorption spectrum

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( v ) = I o ( v ) exp [ α ( v ) C l e f f ]
α ( v ) = S ( T , v o ) g ( v , v o )
P = C R N A C V T = C κ C V T
A ( v ) = ln l o ( v ) I ( v ) = α ( v ) C l e f f
g ( v , v o ) = + g L ( v ' , v o ) g D ( v v ' , v o ) d v '

Metrics