Abstract

We propose and demonstrate a method to perform quantitative phase-sensitive optical time domain reflectometry (Φ-OTDR) using multimode fiber. While most Φ-OTDR sensors use single-mode fiber, multimode fiber exhibits higher thresholds for non-linear effects, a larger capture fraction of Rayleigh backscattered light, and the potential to avoid signal fading by detecting many spatial modes in parallel. Previous multimode fiber based OTDR sensors discarded most of the backscattered light and thus failed to take advantage of these noise-reducing factors. Here, we show that by performing off-axis holography with a high-speed camera, we can record the entire Rayleigh backscattered field, maximizing the detected light level and making the sensor immune to fading. The sensor exhibits a high degree of linearity, a minimum phase noise of −80 dB [rel. rad2/Hz], and 20 kHz bandwidth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative amplitude measuring φ-OTDR using multiple uncorrelated Rayleigh backscattering realizations

Brandon Redding, Matthew J. Murray, Allen Davis, and Clay Kirkendall
Opt. Express 27(24) 34952-34960 (2019)

Speckle-based strain sensing in multimode fiber

Matthew J. Murray, Allen Davis, Clay Kirkendall, and Brandon Redding
Opt. Express 27(20) 28494-28506 (2019)

Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR

Mengmeng Chen, Ali Masoudi, and Gilberto Brambilla
Opt. Express 27(7) 9684-9695 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
    [Crossref] [PubMed]
  2. A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
    [Crossref] [PubMed]
  3. J. C. Juarez and H. F. Taylor, “Distributed fiber optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  4. J. M. Lopez-Higuera, L. Rodriguez Cobo, A. Quintela Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29(4), 587–608 (2011).
    [Crossref]
  5. N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
    [Crossref]
  6. G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3(1), 19–30 (2003).
    [Crossref]
  7. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
    [Crossref]
  8. M. Nakazawa, “Rayleigh backscattering theory for single-mode optical fibers,” J. Opt. Soc. Am. 73(9), 1175–1180 (1983).
    [Crossref]
  9. R. Juskaitis, A. M. Mamedov, V. T. Potapov, and S. V. Shatalin, “Distributed interferometric fiber sensor system,” Opt. Lett. 17(22), 1623–1625 (1992).
    [Crossref] [PubMed]
  10. R. Juskaitis, A. M. Mamedov, V. T. Potapov, and S. V. Shatalin, “Interferometry with Rayleigh backscattering in a single-mode optical fiber,” Opt. Lett. 19(3), 225–227 (1994).
    [Crossref] [PubMed]
  11. R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
    [Crossref]
  12. Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
    [Crossref]
  13. Q. Li, C. Zhang, and C. Li, “Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location,” Optik (Stuttg.) 125(24), 7235–7238 (2014).
    [Crossref]
  14. Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR,” IEEE Photonics J. 8(1), 6800210 (2016).
    [Crossref]
  15. Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
    [Crossref]
  16. C. K. Kirkendall, R. E. Bartolo, A. B. Tveten, and A. Dandridge, “High-resolution distributed fiber optic sensing,” NRL Rev. 2004, 179–181 (2004).
  17. Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” in Proc. of SPIE (Optical Society of America, 2011), 8311, p. 83110S.
  18. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  19. G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightwave Technol. 33(13), 2811–2816 (2015).
    [Crossref]
  20. C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
    [Crossref]
  21. G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
    [Crossref]
  22. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
    [Crossref] [PubMed]
  23. P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
    [Crossref]
  24. A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, and M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13(6), 2019–2024 (2005).
    [Crossref] [PubMed]
  25. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  26. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  27. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  28. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett. 37(16), 3384–3386 (2012).
    [Crossref] [PubMed]
  29. D. Davies, A. H. Hartog, and K. Kader, “Distributed vibration sensing system using multimode fiber,” U.S. patent 7668411 B2 (2010).
  30. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
    [Crossref]
  31. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17(18), 2867–2869 (1978).
    [Crossref] [PubMed]
  32. K. Okamoto, Fundamentals of Optical Waveguides, II (Elsevier, 2006).
  33. N. Verrier and M. Atlan, “Off-axis digital hologram reconstruction: some practical considerations,” Appl. Opt. 50(34), H136–H146 (2011).
    [Crossref] [PubMed]
  34. B. Redding and A. Davis, “Measuring vibrational motion from a moving platform using speckle field detection,” Appl. Opt. 56(9), 2542–2547 (2017).
    [Crossref] [PubMed]
  35. S. B. Alexander, Optical Communication Receiver Design (SPIE, 1997).

2017 (3)

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

B. Redding and A. Davis, “Measuring vibrational motion from a moving platform using speckle field detection,” Appl. Opt. 56(9), 2542–2547 (2017).
[Crossref] [PubMed]

2016 (5)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR,” IEEE Photonics J. 8(1), 6800210 (2016).
[Crossref]

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

2015 (3)

G. Fang, T. Xu, S. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightwave Technol. 33(13), 2811–2816 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

2014 (1)

Q. Li, C. Zhang, and C. Li, “Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location,” Optik (Stuttg.) 125(24), 7235–7238 (2014).
[Crossref]

2013 (3)

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (3)

2011 (2)

2005 (2)

2004 (2)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

C. K. Kirkendall, R. E. Bartolo, A. B. Tveten, and A. Dandridge, “High-resolution distributed fiber optic sensing,” NRL Rev. 2004, 179–181 (2004).

2003 (1)

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3(1), 19–30 (2003).
[Crossref]

2000 (1)

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

1994 (1)

1992 (1)

1984 (1)

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

1983 (1)

1978 (1)

Ajo-Franklin, J. B.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Atlan, M.

Bai, Q.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Bao, X.

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Bartolo, R. E.

C. K. Kirkendall, R. E. Bartolo, A. B. Tveten, and A. Dandridge, “High-resolution distributed fiber optic sensing,” NRL Rev. 2004, 179–181 (2004).

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Biondi, B. L.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Butter, C. D.

Cao, C.

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

Cao, H.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Cobo, A.

Cole, S.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Cranch, G. A.

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3(1), 19–30 (2003).
[Crossref]

Dandridge, A.

C. K. Kirkendall, R. E. Bartolo, A. B. Tveten, and A. Dandridge, “High-resolution distributed fiber optic sensing,” NRL Rev. 2004, 179–181 (2004).

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Davis, A.

Di Pasquale, F.

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR,” IEEE Photonics J. 8(1), 6800210 (2016).
[Crossref]

Diao, D.

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Dreger, D. S.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Fan, M.

Fang, G.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Faralli, S.

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR,” IEEE Photonics J. 8(1), 6800210 (2016).
[Crossref]

Feng, S.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Freifeld, B.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Gavrielides, A.

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

He, Q.

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Healey, P.

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

Hocker, G. B.

Jain, R.

James, S. R.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Jin, B.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Johnson, G. A.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Juarez, J. C.

Juskaitis, R.

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Kirkendall, C. K.

C. K. Kirkendall, R. E. Bartolo, A. B. Tveten, and A. Dandridge, “High-resolution distributed fiber optic sensing,” NRL Rev. 2004, 179–181 (2004).

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3(1), 19–30 (2003).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Li, C.

Q. Li, C. Zhang, and C. Li, “Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location,” Optik (Stuttg.) 125(24), 7235–7238 (2014).
[Crossref]

Li, F.

Li, Q.

Q. Li, C. Zhang, and C. Li, “Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location,” Optik (Stuttg.) 125(24), 7235–7238 (2014).
[Crossref]

Li, Y.

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

Lindsey, N. J.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Liu, X.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Lopez-Higuera, J. M.

Mamedov, A. M.

Martin, E. R.

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

Masoudi, A.

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Mocofanescu, A.

Moser, C.

Muanenda, Y.

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR,” IEEE Photonics J. 8(1), 6800210 (2016).
[Crossref]

Nakarmi, B.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Nakazawa, M.

Nash, P. J.

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3(1), 19–30 (2003).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Newson, T. P.

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Oton, C. J.

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR,” IEEE Photonics J. 8(1), 6800210 (2016).
[Crossref]

Papadopoulos, I. N.

Peng, F.

Peng, G.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Peterson, P.

Posey, R.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Potapov, V. T.

Psaltis, D.

Qian, X.

Quintela Incera, A.

Rao, J.

Rao, Y.

Redding, B.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Rodriguez Cobo, L.

Shang, Y.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Sharma, M.

Shatalin, S. V.

Shaw, K.

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Sun, W.

Sun, Z.

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

Taylor, H. F.

Tu, G. J.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Tveten, A. B.

C. K. Kirkendall, R. E. Bartolo, A. B. Tveten, and A. Dandridge, “High-resolution distributed fiber optic sensing,” NRL Rev. 2004, 179–181 (2004).

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Verrier, N.

Vohra, S. T.

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

Wang, C.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Wang, D.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Wang, L.

Wang, S.

Wang, Y.

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Wang, Z.

Xia, L.

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Xiao, X.

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Xu, T.

Xue, N.

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Zhang, B.

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Zhang, C.

Q. Li, C. Zhang, and C. Li, “Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location,” Optik (Stuttg.) 125(24), 7235–7238 (2014).
[Crossref]

Zhang, L.

Zhang, X.

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

Zhang, X. P.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

Zhang, Y. X.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhu, F.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhu, T.

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Appl. Opt. (3)

Electron. Lett. (2)

R. Posey, G. A. Johnson, and S. T. Vohra, “Strain sensing based on coherent Rayleigh scattering in optical fibre,” Electron. Lett. 36(20), 1688–1689 (2000).
[Crossref]

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

Geophys. Res. Lett. (1)

N. J. Lindsey, E. R. Martin, D. S. Dreger, B. Freifeld, S. Cole, S. R. James, B. L. Biondi, and J. B. Ajo-Franklin, “Fiber-optic network observations of earthquake wavefields,” Geophys. Res. Lett. 44(23), 11,792–11,799 (2017).
[Crossref]

IEEE Photonics J. (1)

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR,” IEEE Photonics J. 8(1), 6800210 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Q. He, T. Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photonics Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an Φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

IEEE Sens. J. (1)

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3(1), 19–30 (2003).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Laser Phys. (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

NRL Rev. (1)

C. K. Kirkendall, R. E. Bartolo, A. B. Tveten, and A. Dandridge, “High-resolution distributed fiber optic sensing,” NRL Rev. 2004, 179–181 (2004).

Opt. Commun. (2)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Y. Zhang, L. Xia, C. Cao, Z. Sun, Y. Li, and X. Zhang, “A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response,” Opt. Commun. 382, 176–181 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optik (Stuttg.) (1)

Q. Li, C. Zhang, and C. Li, “Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location,” Optik (Stuttg.) 125(24), 7235–7238 (2014).
[Crossref]

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Liu, B. Jin, Q. Bai, Y. Wang, D. Wang, and Y. Wang, “Distributed fiber-optic sensors for vibration detection,” Sensors (Basel) 16(8), 1164 (2016).
[Crossref] [PubMed]

Other (4)

D. Davies, A. H. Hartog, and K. Kader, “Distributed vibration sensing system using multimode fiber,” U.S. patent 7668411 B2 (2010).

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” in Proc. of SPIE (Optical Society of America, 2011), 8311, p. 83110S.

K. Okamoto, Fundamentals of Optical Waveguides, II (Elsevier, 2006).

S. B. Alexander, Optical Communication Receiver Design (SPIE, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Time-dependent trace of Rayleigh backscattered power from a graded-index multimode fiber measured with an amplified photodetector (shown in blue) and predicted by Eq. (3) (shown in orange).
Fig. 2
Fig. 2 Schematic of the multimode Rayleigh acoustic sensor. Rayleigh scattering occurs at every point along the multimode fiber as shown in the upper right corner. The light from each delay line hits the camera at different angles as shown in the inset in the upper left corner so that the interference pattern from each delay corresponds to different spatial frequencies. AOM: acousto-optic modulator, HWP: half-wave plate, PBS: polarizing beam splitter, pol: polarizer, BS: beam splitter, FUT: fiber under test
Fig. 3
Fig. 3 a) Raw unprocessed image recorded on the camera with orthogonal interference fringes from each delay line. b) 2-dimensional FFT of the raw unprocessed image. A red box is shown around the spatial frequencies corresponding to delay 1 and a green box is around the frequencies for delay 2. The recovered amplitude and phase corresponding to delays 1 and 2 are shown in (c)-(f).
Fig. 4
Fig. 4 (a) Signal measured with delay 1 and 2 with PZT1 driven. The subtracted signal suppresses the signal by 10 dB. (b) Signal measured with delay 1 and 2 with PZT2 driven.
Fig. 5
Fig. 5 Measured phase recorded with the multimode fiber Φ-OTDR system as a function of PZT drive voltage. The measurements were made with a 12 kHz sinusoidal signal and show a linear response.
Fig. 6
Fig. 6 Phase noise of the multimode fiber Rayleigh acoustic sensor. The phase noise of each delay line is shown on the plot along with the sensor region phase noise. Also shown is the estimated shot noise and the measured laser phase noise, which combine to give the total expected sensor noise.

Tables (1)

Tables Icon

Table 1 Graded-index multimode fiber sensor parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

dϕ(t)=βLξε(t),
E(x,y,z,t)= n A n ψ n (x,y)exp[i(2πνt β n z+ ϕ n +d ϕ n (t))],
P bs (z)= P in ( v g τ 2 ) α R S e 2αz ,
S=0.25 (NA) 2 n 2 ,
S ϕ,sn (f)= 2hν m f s t C η P s
I(t)=2 I LO + I s +2 m I LO I s cos(ωt+ ϕ LO ϕ s ),
I sig 2 = (2 m I LO I s ) 2 cos 2 (ωt+ ϕ LO ϕ s ) =2m I LO I s ,
I N 2 =4q I LO B,
σ ϕ 2 = 1 2CNR ,
CNR I sig 2 I N 2 = m I s 2qB .
σ ϕ 2 = hν m t C η P s ,
σ ϕ 2 = f s 2 S ϕ,sn (f),
S ϕ,sn (f)= 2hν m f s t C η P s .

Metrics