Abstract

Frequency-dependent dielectric constant dispersion of monolayer WSe2, ε(ω)=ε1(ω)+i ε2(ω), was obtained from simultaneously measured transmittance and reflectance spectra. Optical transitions of the trion as well as A-, B-, and C-excitons are clearly resolved in the  ε2 spectrum. A consistent Kramers-Kronig transformation between the ε1 and  ε2 spectra support the validity of the applied analysis. It is found that the A- and B-exciton splitting in the case of the double-layer WSe2 can be attributed to the spin-orbit coupling, which is larger than that in the monolayer WSe2. In addition, the temperature-induced evolution of the A-exciton energy and its width are explained by model equations with electron-phonon interactions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large range modification of exciton species in monolayer WS2

Ke Wei, Yu Liu, Hang Yang, Xiangai Cheng, and Tian Jiang
Appl. Opt. 55(23) 6251-6255 (2016)

Nanophotonics with 2D transition metal dichalcogenides [Invited]

Alex Krasnok, Sergey Lepeshov, and Andrea Alú
Opt. Express 26(12) 15972-15994 (2018)

Highly linear polarized photoluminescence from a rippled WSe2 monolayer

Bilin Li, Zhongqi Ren, Ni Zhong, and Wei Xie
Opt. Express 27(9) 12436-12442 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Doni and G. P. Parravicini, “Energy bands and optical properties of hexagonal boron nitride and graphite,” Il Nuovo Cimento B 64(1), 117–144 (1969).
    [Crossref]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  3. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  4. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  7. D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
    [Crossref] [PubMed]
  8. Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
    [Crossref]
  9. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
    [Crossref] [PubMed]
  10. R. S. Knox, Theory of Excitons (Academic, 1963).
  11. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
    [Crossref]
  12. N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
    [Crossref] [PubMed]
  13. D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
    [Crossref] [PubMed]
  14. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
    [Crossref]
  15. S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
    [Crossref]
  16. Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
    [Crossref] [PubMed]
  17. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
    [Crossref] [PubMed]
  18. B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
    [Crossref]
  19. Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107(8), 083103 (2015).
    [Crossref]
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  21. G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
    [Crossref] [PubMed]
  22. T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
    [Crossref] [PubMed]
  23. J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18(73), 193–335 (1969).
    [Crossref]
  24. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
    [Crossref] [PubMed]
  25. M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors (Springer, 2005).
  26. O. N. Stavroudis and L. E. Sutton, “Rapid method for interpolating refractive index measurements,” J. Opt. Soc. Am. 51(3), 368–370 (1961).
    [Crossref]
  27. H. Wang, C. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.,” Nano Lett. 15(1), 339–345 (2015).
    [Crossref] [PubMed]
  28. M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A 93(1), 013832 (2016).
    [Crossref]
  29. T. Cheiwchanchamnangij and W. R. L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2,” Phys. Rev. B 85(20), 205302 (2012).
    [Crossref]
  30. T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
    [Crossref] [PubMed]
  31. A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
    [Crossref] [PubMed]
  32. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).
  33. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  34. S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B Condens. Matter 42(17), 11218–11231 (1990).
    [Crossref] [PubMed]

2018 (1)

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

2017 (1)

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

2016 (2)

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A 93(1), 013832 (2016).
[Crossref]

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

2015 (7)

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

H. Wang, C. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.,” Nano Lett. 15(1), 339–345 (2015).
[Crossref] [PubMed]

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
[Crossref]

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107(8), 083103 (2015).
[Crossref]

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

2014 (5)

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
[Crossref]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

2013 (1)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

2012 (3)

T. Cheiwchanchamnangij and W. R. L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2,” Phys. Rev. B 85(20), 205302 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref] [PubMed]

2011 (2)

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

2010 (2)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

2008 (1)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

1990 (1)

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B Condens. Matter 42(17), 11218–11231 (1990).
[Crossref] [PubMed]

1969 (2)

J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18(73), 193–335 (1969).
[Crossref]

E. Doni and G. P. Parravicini, “Energy bands and optical properties of hexagonal boron nitride and graphite,” Il Nuovo Cimento B 64(1), 117–144 (1969).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

1961 (1)

Amara, K. K.

Aspnes, D. E.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Barinov, A.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Bartels, L.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Bolotin, K. I.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Burger, A.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Burkard, G.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

Cai, Y.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Cao, L.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Caudel, D.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Chae, D. H.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Cheiwchanchamnangij, T.

T. Cheiwchanchamnangij and W. R. L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2,” Phys. Rev. B 85(20), 205302 (2012).
[Crossref]

Chenet, D. A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Cheng, Y.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
[Crossref]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Cobden, D. H.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Constantinescu, G. C.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Dai, Y.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

De Greve, K.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Debbichi, L.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Doni, E.

E. Doni and G. P. Parravicini, “Energy bands and optical properties of hexagonal boron nitride and graphite,” Il Nuovo Cimento B 64(1), 117–144 (1969).
[Crossref]

Dowben, P. A.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Drummond, N. D.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Duesberg, G. S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Eda, G.

Eichfeld, C. M.

S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
[Crossref]

Eichfeld, S. M.

S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
[Crossref]

Fabian, J.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

Fal’ko, V.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

Feng, W.

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Ghimire, N. J.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gmitra, M.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Gunlycke, D.

Gurarslan, A.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

He, K.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

High, A. A.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Hine, N. D.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Hone, J.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hossain, L.

S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
[Crossref]

Isarraraz, M.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Ivanov, B. L.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Jang, Y. D.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Jauregui, L. A.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Jeong, T. Y.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Jin, B. M.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Jones, A. M.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Jung, S.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Kandyba, V.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Kim, P.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Kim, Y. H.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Kitamura, K.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Klement, P.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Klots, A. R.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Komesu, T.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Kormányos, A.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

Krzyzanowska, H.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Kumar, N.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Kuno, M.

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107(8), 083103 (2015).
[Crossref]

Laker, Z. P.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Lambrecht, W. R. L.

T. Cheiwchanchamnangij and W. R. L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2,” Phys. Rev. B 85(20), 205302 (2012).
[Crossref]

Le, D.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lee, D.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Lee, H. R.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Li, W.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Lin, J.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Lin, Y. C.

S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
[Crossref]

Liu, G. B.

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref] [PubMed]

Liu, X.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Lui, C. H.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Lukin, M. D.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Lunney, J. G.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Mak, K. F.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Mandrus, D. G.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Marsden, A. J.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

McEvoy, N.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Merano, M.

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A 93(1), 013832 (2016).
[Crossref]

Mirza, I.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Morozov, Y. V.

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107(8), 083103 (2015).
[Crossref]

Mukherjee, B.

Newaz, A. K.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Nguyen, N. V.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Nguyen, P. V.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

O’Brien, M.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Pantelides, S. T.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Park, H.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Park, J.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Parravicini, G. P.

E. Doni and G. P. Parravicini, “Energy bands and optical properties of hexagonal boron nitride and graphite,” Il Nuovo Cimento B 64(1), 117–144 (1969).
[Crossref]

Peelaers, H.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Prasai, D.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Preciado, E.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Rahman, T. S.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Rana, F.

H. Wang, C. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.,” Nano Lett. 15(1), 339–345 (2015).
[Crossref] [PubMed]

Reinecke, T. L.

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B Condens. Matter 42(17), 11218–11231 (1990).
[Crossref] [PubMed]

Rhim, S. H.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Rivera, P.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Robinson, J. A.

S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
[Crossref]

Ross, J. S.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Rudin, S.

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B Condens. Matter 42(17), 11218–11231 (1990).
[Crossref] [PubMed]

Schwingenschlögl, U.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
[Crossref]

Scuri, G.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Segall, B.

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B Condens. Matter 42(17), 11218–11231 (1990).
[Crossref] [PubMed]

Seyler, K.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Shan, J.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shi, X.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Shih, E. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Shu, C.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Simsek, E.

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Stavroudis, O. N.

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Sutton, L. E.

Tanabe, I.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Taniguchi, T.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Tolk, N. H.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Troha, C.

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Tseng, F.

Van de Walle, C. G.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Velizhanin, K. A.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Wang, B.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, H.

H. Wang, C. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.,” Nano Lett. 15(1), 339–345 (2015).
[Crossref] [PubMed]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, Z.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Watanabe, K.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Wild, D. S.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Wilson, J. A.

J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18(73), 193–335 (1969).
[Crossref]

Wilson, N. R.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Winters, S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Wu, Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Xiao, D.

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref] [PubMed]

Xu, X.

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref] [PubMed]

Yan, J.

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Yao, W.

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref] [PubMed]

Yee, K. J.

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Yim, C.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Yoffe, A.

J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18(73), 193–335 (1969).
[Crossref]

Yu, Y.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Zhan, T.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Zhang, C.

H. Wang, C. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.,” Nano Lett. 15(1), 339–345 (2015).
[Crossref] [PubMed]

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Zhang, Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Zhang, Y. W.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Zhao, H.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Zhao, L.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Zhou, Y.

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
[Crossref]

Zi, J.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

Zólyomi, V.

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

2D Materials (1)

A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, “k· p theory for two-dimensional transition metal dichalcogenide semiconductors,” 2D Materials 2, 022001 (2015).

ACS Nano (1)

T. Y. Jeong, B. M. Jin, S. H. Rhim, L. Debbichi, J. Park, Y. D. Jang, H. R. Lee, D. H. Chae, D. Lee, Y. H. Kim, S. Jung, and K. J. Yee, “Coherent lattice vibrations in mono- and few-layer WSe2,” ACS Nano 10(5), 5560–5566 (2016).
[Crossref] [PubMed]

Adv. Phys. (1)

J. A. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18(73), 193–335 (1969).
[Crossref]

APL Mater. (1)

S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, “Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry,” APL Mater. 2(9), 092508 (2014).
[Crossref]

Appl. Phys. Lett. (2)

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Y. V. Morozov and M. Kuno, “Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2,” Appl. Phys. Lett. 107(8), 083103 (2015).
[Crossref]

Il Nuovo Cimento B (1)

E. Doni and G. P. Parravicini, “Energy bands and optical properties of hexagonal boron nitride and graphite,” Il Nuovo Cimento B 64(1), 117–144 (1969).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (2)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. Condens. Matter 25(21), 215301 (2013).
[Crossref] [PubMed]

D. Le, A. Barinov, E. Preciado, M. Isarraraz, I. Tanabe, T. Komesu, C. Troha, L. Bartels, T. S. Rahman, and P. A. Dowben, “Spin-orbit coupling in the band structure of monolayer WSe2.,” J. Phys. Condens. Matter 27(18), 182201 (2015).
[Crossref] [PubMed]

Nano Lett. (2)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

H. Wang, C. Zhang, and F. Rana, “Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.,” Nano Lett. 15(1), 339–345 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268–272 (2014).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. A (1)

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A 93(1), 013832 (2016).
[Crossref]

Phys. Rev. B (3)

T. Cheiwchanchamnangij and W. R. L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2,” Phys. Rev. B 85(20), 205302 (2012).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84(15), 153402 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B Condens. Matter 42(17), 11218–11231 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu, K. De Greve, L. A. Jauregui, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin, and H. Park, “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett. 120(3), 037402 (2018).
[Crossref] [PubMed]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2.,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802 (2012).
[Crossref] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Sci. Adv. (1)

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. Hine, X. Xu, and D. H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures,” Sci. Adv. 3(2), e1601832 (2017).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated dielectric function of atomically thin MoS2 films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4(1), 6608 (2015).
[Crossref] [PubMed]

Other (3)

M. Cardona and Y. Y. Peter, Fundamentals of Semiconductors (Springer, 2005).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

R. S. Knox, Theory of Excitons (Academic, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup for simultaneous reflection and transmission measurements. White light from the supercontinuum laser passes the monochromator and is focused onto WSe2 layers using an objective lens. Transmitted or reflected beams are simultaneously measured using photodiodes. The optical microscope image of the WSe2 layers is included in the figure.
Fig. 2
Fig. 2 Normalized reflectance ( R n ) and transmittance (T) obtained in monolayer WSe2 at 80 K. The inset shows the comparison of R n and T n spectra around the sharp peak at 1.75 eV.
Fig. 3
Fig. 3 Real (a) and imaginary (b) spectra of the complex dielectric constant as a function of the photon energy for monolayer WSe2 at 80 K with the plots in the right highlighting the region near the A-exciton position. The notations A, B, and C in ε 2 ( ω )  indicate positions of A-, B-, and C-excitons, respectively. The Kramers-Kronig transformation of the ε 2 ( ω ) , ε 1KKR ( ω ) in (a), is included for comparison with ε 1 ( ω ). (c) ε 1KKR ( ω ) spectrum in the low energy region below a photon energy of 1.4 eV obtained from the Kramers-Kronig transformation of ε 2 ( ω ) , and model fitting based on the Sellmeier single oscillator formula.
Fig. 4
Fig. 4 ε 1 and ε 2 spectra of the double-layer WSe2 at 80 K compared with those of the monolayer WSe2 plotted with solid and dotted lines, respectively.
Fig. 5
Fig. 5 ε 2 spectrum at different temperatures from 10 to 290 K. Inset shows the temperature dependence of the energy and width of A-exciton resonance, where the dotted lines represent the model fitting of the energy and width according to the Varshni formula and Rudin’s relation, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ A B C D ]=[ ε +1 2 ε 1 2 ε 1 2 ε +1 2 ]×[ exp( i ε ωd c ) 1 1 exp( i ε ωd c ) ]×[ n q + ε 2 ε n q ε 2 ε n q ε 2 ε n q + ε 2 ε ]

Metrics