Abstract

Ghost imaging system requires a large number of samples to reconstruct the object. Computational ghost imaging can use well-designed pre-modulated orthogonal patterns to reduce the requirement of sampling number and increase the imaging quality, while the rotating ground glass (RGG) scheme cannot. Instead of the pre-modulation method, a post-processing method using Gram-Schmidt process to orthonormalize the patterns in a RGG scheme is introduced. Reconstructed ghost image after the Gram-Schmidt process (SGI) are tested using the quality indicators such as the Contrast-to-Noise (CNR), the Peak Signal to Noise Ratio (PSNR), the Correlation Coefficient (CC) and reducing the Mean Square Error (MSE). Simulation results show that this method has obvious advantage on enhancing the efficiency of image acquisition, and the sampling number requirement drops from several thousands to a few hundreds in ideal condition. However, in actual system with noise, the image quality from SGI declines in large sampling number, for noise and errors accumulate in the orthonormalization process. So an improved Group SGI method is then developed to avoid this error accumulation, which behaves effectively in reconstructing the image from experimental data and show good performances in large sampling number too. Since this method do not change the relationship between the reference patterns and the bucket values, it can easily combine with most of reconstruction algorithms and improve their reconstruction efficiency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noise reduction in computational ghost imaging by interpolated monitoring

Zhaohua Yang, Yuzhe Sun, Shaofan Qu, Yuanjin Yu, Ruitao Yan, Ai-Xin Zhang, and Ling-An Wu
Appl. Opt. 57(21) 6097-6101 (2018)

High quality computational ghost imaging using multi-fluorescent screen

Hossein Ghanbari-Ghalehjoughi, Sohrab Ahmadi-Kandjani, and Mansour Eslami
J. Opt. Soc. Am. A 32(2) 323-328 (2015)

Pseudo-thermal imaging by using sequential-deviations for real-time image reconstruction

Ya-Xin Li, Wen-Kai Yu, Jian Leng, and Shuo-Fei Wang
Opt. Express 27(24) 35166-35181 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref]
  2. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
    [Crossref]
  3. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
    [Crossref]
  4. W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
    [Crossref] [PubMed]
  5. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref] [PubMed]
  6. X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8, 5012 (2018).
    [Crossref] [PubMed]
  7. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
    [Crossref] [PubMed]
  8. X. F. Liu, X. H. Chen, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “Lensless ghost imaging with sunlight,” Opt. Lett. 39(8), 2314–2317 (2014).
    [Crossref] [PubMed]
  9. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
    [Crossref]
  10. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  11. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  12. L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform,” Photon. Res. 4(6), 240–244 (2016).
    [Crossref]
  13. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
    [Crossref]
  14. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
    [Crossref] [PubMed]
  15. R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
    [Crossref] [PubMed]
  16. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
    [Crossref] [PubMed]
  17. S. M. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
    [Crossref] [PubMed]
  18. X. Xu, E. Li, X. Shen, and S. Han, “Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization,” Chin. Opt. Lett. 13(7), 071101 (2015).
    [Crossref]
  19. W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
    [Crossref] [PubMed]
  20. W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
    [Crossref] [PubMed]
  21. W. Gong, “High-resolution pseudo-inverse ghost imaging,” Photon. Res. 3(5), 234–237 (2015).
    [Crossref]
  22. X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3(4), 153–157 (2015).
    [Crossref]
  23. J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).
  24. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
    [Crossref]
  25. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010)
    [Crossref] [PubMed]
  26. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref] [PubMed]
  27. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [Crossref]
  28. W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
    [Crossref]
  29. C. Wang, W. Gong, X. Shao, and S. Han, “The influence of the property of random coded patterns on fluctuation-correlation ghost imaging,” J. Opt. 18, 065703 (2016).
    [Crossref]
  30. P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
    [Crossref]
  31. J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
    [Crossref] [PubMed]

2018 (1)

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8, 5012 (2018).
[Crossref] [PubMed]

2017 (2)

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
[Crossref] [PubMed]

2016 (8)

C. Wang, W. Gong, X. Shao, and S. Han, “The influence of the property of random coded patterns on fluctuation-correlation ghost imaging,” J. Opt. 18, 065703 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform,” Photon. Res. 4(6), 240–244 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (1)

2012 (2)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

2010 (3)

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010)
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

2009 (2)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

2008 (2)

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2005 (3)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Baldwin, K. G. H.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Boyd, R. W.

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010)
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Cao, D. Z.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Chan, K. W. C.

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010)
[Crossref] [PubMed]

Chen, M.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3(4), 153–157 (2015).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Chen, X. H.

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

Dall, R. G.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Deng, C.

Du, G.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

Edgar, M. P.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Gao, L.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Gibson, G. M.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Gong, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

C. Wang, W. Gong, X. Shao, and S. Han, “The influence of the property of random coded patterns on fluctuation-correlation ghost imaging,” J. Opt. 18, 065703 (2016).
[Crossref]

W. Gong, “High-resolution pseudo-inverse ghost imaging,” Photon. Res. 3(5), 234–237 (2015).
[Crossref]

X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3(4), 153–157 (2015).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
[Crossref] [PubMed]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[Crossref]

Guo, H.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
[Crossref] [PubMed]

Han, S.

C. Wang, W. Gong, X. Shao, and S. Han, “The influence of the property of random coded patterns on fluctuation-correlation ghost imaging,” J. Opt. 18, 065703 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
[Crossref] [PubMed]

X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3(4), 153–157 (2015).
[Crossref]

X. Xu, E. Li, X. Shen, and S. Han, “Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization,” Chin. Opt. Lett. 13(7), 071101 (2015).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[Crossref]

Henson, B. M.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Hodgman, S. S.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Khakimov, R. I.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Khamoushi, S. M. M.

Krogstad, M.

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Li, E.

X. Xu, E. Li, X. Shen, and S. Han, “Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization,” Chin. Opt. Lett. 13(7), 071101 (2015).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Li, J.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
[Crossref] [PubMed]

Li, X.

Lin, L. F.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Liu, X.

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8, 5012 (2018).
[Crossref] [PubMed]

Liu, X. F.

Lu, R.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Luo, B.

J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
[Crossref] [PubMed]

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Nosrati, Y.

O’Sullivan, M. N.

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010)
[Crossref] [PubMed]

Padgett, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Paganin, D. M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Pelliccia, D.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Rack, A.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Radwell, N.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Shao, X.

C. Wang, W. Gong, X. Shao, and S. Han, “The influence of the property of random coded patterns on fluctuation-correlation ghost imaging,” J. Opt. 18, 065703 (2016).
[Crossref]

Shapiro, J. H.

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shen, X.

Shi, J.

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8, 5012 (2018).
[Crossref] [PubMed]

Shi, Z.

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

Shih, Y.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Shin, D. K.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Sun, B.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Sun, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Tavassoli, S. H.

Truscott, A. G.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

Wang, C.

C. Wang, W. Gong, X. Shao, and S. Han, “The influence of the property of random coded patterns on fluctuation-correlation ghost imaging,” J. Opt. 18, 065703 (2016).
[Crossref]

Wang, H.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Wang, K.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Wang, L.

Wu, G.

J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
[Crossref] [PubMed]

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

Wu, L. A.

Wu, X.

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8, 5012 (2018).
[Crossref] [PubMed]

Xiao, T.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

Xie, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

Xiong, J.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Xu, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Xu, X.

Yang, D.

J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
[Crossref] [PubMed]

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

Yao, X. R.

Yin, L.

J. Li, D. Yang, B. Luo, G. Wu, L. Yin, and H. Guo, “Image quality recovery in binary ghost imaging by adding random noise,” Opt. Lett. 42(8), 1640–1643 (2017).
[Crossref] [PubMed]

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

Yu, H.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

Yu, W. K.

Zeng, G.

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8, 5012 (2018).
[Crossref] [PubMed]

Zerom, P.

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

Zhai, G. J.

Zhai, Y. H.

Zhang, D.

Zhang, S. H.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Zhao, C.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Zhao, S.

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Zhu, D.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

Appl. Phys. Lett. (3)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Chin. Opt. Lett. (1)

Chinese Sci. Bull. (1)

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Chinese Sci. Bull. 62, 717–723 (2017).

J. Opt. (1)

C. Wang, W. Gong, X. Shao, and S. Han, “The influence of the property of random coded patterns on fluctuation-correlation ghost imaging,” J. Opt. 18, 065703 (2016).
[Crossref]

Nat. Commun. (2)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Nature (1)

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Letter Ghost imaging with atoms,” Nature 540, 100–103 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Photon. Res. (3)

Phys. Lett. A (1)

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A 374, 1005–1008 (2010).
[Crossref]

Phys. Rev. A (4)

P. Zerom, Z. Shi, M. N. O’Sullivan, K. W. C. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86, 063817 (2012).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref]

Phys. Rev. L (3)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. L 94, 063601 (2005).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-Transform Ghost Imaging with Hard X Rays,” Phys. Rev. L 117, 113901 (2016).
[Crossref]

Phys. Rev. Lett. (2)

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental X-Ray Ghost Imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Sci. Rep. (4)

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8, 5012 (2018).
[Crossref] [PubMed]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Classical pseudo-thermal light ghost imaging and the orthonormalization process.
Fig. 2
Fig. 2 Simulation setup. The reference patterns are captured in the experimental system, while the bucket values are calculated in ideal condition by software.
Fig. 3
Fig. 3 Correlation coefficients (CC) distribution of row vectors in the measure matrix. (a) is the CC between row vectors before processing, (b) is the CC between row vectors after processing, (c) is the statistical histogram of (a), (d) is the statistical histogram of (b).
Fig. 4
Fig. 4 CC distribution of column vectors in the measure matrix. (a) is the CC between the first 4200 column vectors before processing, (b) is the CC between the first 4200 column vectors after processing, (c) is the statistical histogram of (a), (d) is the statistical histogram of (b).
Fig. 5
Fig. 5 Simulation results. The reconstructed results are reshaped back to 140 ×140.
Fig. 6
Fig. 6 Image qualities via different measurement times by SGI, CGI and GI. (a) is lines of CNR, (b) is MSE, (c) is PSNR, (d) is CC.
Fig. 7
Fig. 7 Performance of different methods in different noise levels. (a) is CNR, (b) is MSE, (c) is PSNR, (d) is CC.
Fig. 8
Fig. 8 Optimal sampling numbers via different noise levels for four images. (a) The images. (b) is optimal sampling numbers of CNR, (c) is those of PSNR, (d) is those of CC.
Fig. 9
Fig. 9 Image qualities from experimental results. (a) is CNR, (b) is MSE, (c) is PSNR, (d) is CC.
Fig. 10
Fig. 10 Image qualities from experimental resultsvia different measurement times by group SGI, CGI and GI. (a) is CNR, (b) is MSE, (c) is PSNR, (d) is CC.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

y m = α i = 1 U j = 1 V ϕ i , j m o i , j ,
Y = AX ,
Y = [ y 1 y 2 y N ] , A = [ R 1 R 2 R N ] , X = [ x 1 x 2 x 3 x L ] .
G = 1 N A T ( Y Y )
G = 1 N A T AX 1 N A T Y .
c m n = R ˜ n R m R ˜ n R ˜ n ,
R ˜ 1 = R 1 , R ˜ 2 = R 2 c 21 R ˜ 1 , R ˜ 3 = R 3 c 31 R ˜ 1 c 32 R ˜ 2 , R ˜ N = R N n = 1 N 1 c N n R ˜ i .
R ˜ m = R ˜ m R ˜ m ,
y ˜ m = y m n = 1 m 1 c m n y ˜ n y ˜ m = y ˜ m R ˜ m .
Y ˜ = A ˜ X .
G = 1 N A ˜ T ( Y ˜ Y ˜ ) ,
CNR = G ( 1 ) G ( 0 ) Var [ G ( 1 ) ] + Var [ G ( 0 ) ] ,
MSE = 1 L i = 1 L ( g i x i ) 2 ,
PSNR = 10 × log 10 [ ( 2 k 1 ) 2 MSE ] ,
CC = Cov ( G , X ) Var ( G ) Var ( X ) ,
Q dB = 10 log P ref P noise ,

Metrics