Abstract

In this paper, a dual-band dual-polarized reflectarray for generating dual beams with respect to carrying two different orbital angular momentum (OAM) topological charges operating in the C-band in horizontal polarization and in the X-band in vertical polarization is proposed, with two separate horns performing on the two proposed bands as the feeding. The proposed reflectarray consists of two band reflective element cells operating in two orthogonal directions. Owing to the two composing elements orthogonally interleaved on the reflectarray surface, the corresponding phase compensation performance in one band can be slightly affected by the elemental resonance in another band; thus, the degree of the coupling between the elements with different-band operations can be neglected, resulting in fairly independent phase compensation. In other words, the desired OAM generation reflectarray, to some extent, can be developed based on two different frequency band OAM reflectarrays at the same aperture. In addition, simulations and measurements strongly suggest the feasibility and the validity of the approach, which provides a solid foundation for the application of multi-band reflectarrays to the multi-OAM-mode generation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums

Jin Yang, Cheng Zhang, Huifeng Ma, Wei Yuan, Liuxi Yang, Juncheng Ke, Mingzheng Chen, Abdelhady Mahmoud, Qiang Cheng, and Tiejun Cui
Opt. Express 26(24) 31664-31674 (2018)

Dual-band vortex beam generation with different OAM modes using single-layer metasurface

Chen Ji, Jiakun Song, Cheng Huang, Xiaoyu Wu, and Xiangang Luo
Opt. Express 27(1) 34-44 (2019)

Metasurface-based broadband orbital angular momentum generator in millimeter wave region

Fan Bi, Zhongling Ba, and Xiong Wang
Opt. Express 26(20) 25693-25705 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [Crossref] [PubMed]
  2. A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48(21), 1365 (2012).
    [Crossref]
  3. M. Lin, Y. Gao, P. Liu, and J. Liu, “Theoretical Analyses and Design of Circular Array to Generate Orbital Angular Momentum,” IEEE Trans. Antenn. Propag. 65(7), 3510–3519 (2017).
    [Crossref]
  4. Z.-G. Guo and G.-M. Yang, “Radial Uniform Circular Antenna Array for Dual-Mode OAM Communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
    [Crossref]
  5. L. Li and X. Zhou, “Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves,” Sci. Rep. 8(1), 5128 (2018).
    [Crossref] [PubMed]
  6. G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
    [Crossref] [PubMed]
  7. C. Zhang and L. Ma, “Millimetre Wave with Rotational Orbital Angular Momentum,” Sci. Rep. 6(1), 31921 (2016).
    [Crossref] [PubMed]
  8. X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
    [Crossref]
  9. F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
    [Crossref]
  10. E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
  11. W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
    [Crossref] [PubMed]
  12. W. Cheng, H. Zhang, L. Liang, H. Jing, and Z. Li, “Orbital-Angular-Momentum Embedded Massive MIMO: Achieving Multiplicative Spectrum-Efficiency for mmWave Communications,” IEEE Access 6, 2732–2745 (2017).
  13. B. Xu, C. Wu, Z. Wei, Y. Fan, and H. Li, “Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase,” Opt. Mater. Express 6(12), 3940 (2016).
    [Crossref]
  14. S. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312 (2017).
    [Crossref]
  15. J. Du and J. Wang, “Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer,” Opt. Express 26(10), 13183–13194 (2018).
    [Crossref] [PubMed]
  16. Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
    [Crossref]
  17. S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
    [Crossref]
  18. L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(4), 4814 (2014).
    [PubMed]
  19. R. Feng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Orbital angular momentum generation method based on transformation electromagnetics,” Opt. Express 26(9), 11708–11717 (2018).
    [Crossref] [PubMed]
  20. S. Jiang, C. Chen, H. Zhang, and W. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
    [Crossref] [PubMed]
  21. K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
    [Crossref] [PubMed]
  22. S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
    [Crossref] [PubMed]
  23. X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).
  24. B. Liu, G. Lin, Y. Cui, and R. Li, “An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding,” Sci. Rep. 7(1), 9852 (2017).
    [Crossref] [PubMed]
  25. H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
    [Crossref]
  26. S. Jiang, C. Chen, H. Zhang, and W. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
    [Crossref] [PubMed]
  27. B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
    [Crossref]

2018 (8)

L. Li and X. Zhou, “Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves,” Sci. Rep. 8(1), 5128 (2018).
[Crossref] [PubMed]

J. Du and J. Wang, “Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer,” Opt. Express 26(10), 13183–13194 (2018).
[Crossref] [PubMed]

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

R. Feng, J. Yi, S. N. Burokur, L. Kang, H. Zhang, and D. H. Werner, “Orbital angular momentum generation method based on transformation electromagnetics,” Opt. Express 26(9), 11708–11717 (2018).
[Crossref] [PubMed]

S. Jiang, C. Chen, H. Zhang, and W. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref] [PubMed]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref] [PubMed]

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

S. Jiang, C. Chen, H. Zhang, and W. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref] [PubMed]

2017 (7)

S. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312 (2017).
[Crossref]

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

B. Liu, G. Lin, Y. Cui, and R. Li, “An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding,” Sci. Rep. 7(1), 9852 (2017).
[Crossref] [PubMed]

H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

W. Cheng, H. Zhang, L. Liang, H. Jing, and Z. Li, “Orbital-Angular-Momentum Embedded Massive MIMO: Achieving Multiplicative Spectrum-Efficiency for mmWave Communications,” IEEE Access 6, 2732–2745 (2017).

M. Lin, Y. Gao, P. Liu, and J. Liu, “Theoretical Analyses and Design of Circular Array to Generate Orbital Angular Momentum,” IEEE Trans. Antenn. Propag. 65(7), 3510–3519 (2017).
[Crossref]

Z.-G. Guo and G.-M. Yang, “Radial Uniform Circular Antenna Array for Dual-Mode OAM Communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

2016 (5)

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

C. Zhang and L. Ma, “Millimetre Wave with Rotational Orbital Angular Momentum,” Sci. Rep. 6(1), 31921 (2016).
[Crossref] [PubMed]

B. Xu, C. Wu, Z. Wei, Y. Fan, and H. Li, “Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase,” Opt. Mater. Express 6(12), 3940 (2016).
[Crossref]

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

2015 (2)

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

2014 (1)

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(4), 4814 (2014).
[PubMed]

2012 (1)

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48(21), 1365 (2012).
[Crossref]

2011 (1)

F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

2008 (1)

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

2007 (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Ahmed, N.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Allen, B.

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48(21), 1365 (2012).
[Crossref]

Ashrafi, S.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Bai, X. D.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Bao, C.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Barbieri, C.

F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Bergman, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Burokur, S. N.

Byun, W. J.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Cai, T.

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

Cao, Y.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Carozzi, T. D.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Chen, C.

Chen, W.

Cheng, L.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(4), 4814 (2014).
[PubMed]

Cheng, W.

W. Cheng, H. Zhang, L. Liang, H. Jing, and Z. Li, “Orbital-Angular-Momentum Embedded Massive MIMO: Achieving Multiplicative Spectrum-Efficiency for mmWave Communications,” IEEE Access 6, 2732–2745 (2017).

Chi, H.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Cho, Y. H.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Choi, H. D.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Cui, Y.

B. Liu, G. Lin, Y. Cui, and R. Li, “An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding,” Sci. Rep. 7(1), 9852 (2017).
[Crossref] [PubMed]

Ding, X.

Dong, S.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

Du, J.

Fan, Y.

Feng, R.

Franke-Arnold, S.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Gao, Y.

M. Lin, Y. Gao, P. Liu, and J. Liu, “Theoretical Analyses and Design of Circular Array to Generate Orbital Angular Momentum,” IEEE Trans. Antenn. Propag. 65(7), 3510–3519 (2017).
[Crossref]

Geng, J. P.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Guo, Z.-G.

Z.-G. Guo and G.-M. Yang, “Radial Uniform Circular Antenna Array for Dual-Mode OAM Communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

Hao, Z. C.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(4), 4814 (2014).
[PubMed]

He, Q.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

Hong, W.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(4), 4814 (2014).
[PubMed]

Hu, P. C.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Hu, Y.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Hui, X.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Ibragimov, N. H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Istomin, Y. N.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Jack, B.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Jia, M.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

Jiang, S.

Jin, R. H.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Jin, X.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Jing, H.

W. Cheng, H. Zhang, L. Liang, H. Jing, and Z. Li, “Orbital-Angular-Momentum Embedded Massive MIMO: Achieving Multiplicative Spectrum-Efficiency for mmWave Communications,” IEEE Access 6, 2732–2745 (2017).

Kang, L.

Khamitova, R.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Kim, B. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Kim, K. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Kou, N.

Lee, Y. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Li, H.

Li, L.

L. Li and X. Zhou, “Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves,” Sci. Rep. 8(1), 5128 (2018).
[Crossref] [PubMed]

S. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312 (2017).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Li, R.

B. Liu, G. Lin, Y. Cui, and R. Li, “An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding,” Sci. Rep. 7(1), 9852 (2017).
[Crossref] [PubMed]

Li, X.

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

Li, Z.

W. Cheng, H. Zhang, L. Liang, H. Jing, and Z. Li, “Orbital-Angular-Momentum Embedded Massive MIMO: Achieving Multiplicative Spectrum-Efficiency for mmWave Communications,” IEEE Access 6, 2732–2745 (2017).

Liang, J. G.

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

Liang, L.

W. Cheng, H. Zhang, L. Liang, H. Jing, and Z. Li, “Orbital-Angular-Momentum Embedded Massive MIMO: Achieving Multiplicative Spectrum-Efficiency for mmWave Communications,” IEEE Access 6, 2732–2745 (2017).

Liang, X. L.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Liang, Z.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

Lin, G.

B. Liu, G. Lin, Y. Cui, and R. Li, “An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding,” Sci. Rep. 7(1), 9852 (2017).
[Crossref] [PubMed]

Lin, M.

M. Lin, Y. Gao, P. Liu, and J. Liu, “Theoretical Analyses and Design of Circular Array to Generate Orbital Angular Momentum,” IEEE Trans. Antenn. Propag. 65(7), 3510–3519 (2017).
[Crossref]

Ling, X.

H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Liu, B.

B. Liu, G. Lin, Y. Cui, and R. Li, “An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding,” Sci. Rep. 7(1), 9852 (2017).
[Crossref] [PubMed]

Liu, C.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Liu, H.

H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Liu, J.

M. Lin, Y. Gao, P. Liu, and J. Liu, “Theoretical Analyses and Design of Circular Array to Generate Orbital Angular Momentum,” IEEE Trans. Antenn. Propag. 65(7), 3510–3519 (2017).
[Crossref]

Liu, P.

M. Lin, Y. Gao, P. Liu, and J. Liu, “Theoretical Analyses and Design of Circular Array to Generate Orbital Angular Momentum,” IEEE Trans. Antenn. Propag. 65(7), 3510–3519 (2017).
[Crossref]

Lu, M.

Luo, W.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

Ma, L.

C. Zhang and L. Ma, “Millimetre Wave with Rotational Orbital Angular Momentum,” Sci. Rep. 6(1), 31921 (2016).
[Crossref] [PubMed]

Mari, E.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Molisch, A. F.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Oldoni, M.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

Padgett, M. J.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Palmer, K.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Parisi, G.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

Ratni, B.

Ravanelli, R. A.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

Ren, Y.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Romanato, F.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Sajuyigbe, S.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Sjöholm, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Song, M. S.

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Spinello, F.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

Sun, S.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

Sun, Y.

H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Sun, Y. T.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Talwar, S.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Tamburini, F.

F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Tang, K.

Tang, S.

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

Tennant, A.

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48(21), 1365 (2012).
[Crossref]

Then, H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Thidé, B.

F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Tur, M.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Wang, G. M.

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

Wang, J.

Wang, K.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Wang, Z.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Wei, Z.

Werner, D. H.

Willner, A. E.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Willner, A. J.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Wu, C.

Wu, Q.

Xie, G.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Xu, B.

Xu, C.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Xu, H.-X.

H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Yan, Y.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Yang, G.-M.

Z.-G. Guo and G.-M. Yang, “Radial Uniform Circular Antenna Array for Dual-Mode OAM Communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

Yao, Y.

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

Yi, J.

Yu, J.

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

Yu, S.

S. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7(9), 3312 (2017).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Yuan, F.

H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Yuan, Y.

Zhang, C.

C. Zhang and L. Ma, “Millimetre Wave with Rotational Orbital Angular Momentum,” Sci. Rep. 6(1), 31921 (2016).
[Crossref] [PubMed]

Zhang, D.

Zhang, H.

Zhang, K.

Zhang, X.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Zhao, Z.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Zheng, S.

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Zhou, L.

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

Zhou, X.

L. Li and X. Zhou, “Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves,” Sci. Rep. 8(1), 5128 (2018).
[Crossref] [PubMed]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Ziyadi, M.

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, “High-efficiency generation of Bessel beams with transmissive metasurfaces,” Appl. Phys. Lett. 112(19), 191901 (2018).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

F. Tamburini, E. Mari, B. Thidé, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Electron. Lett. (1)

A. Tennant and B. Allen, “Generation of OAM radio waves using circular time-switched array antenna,” Electron. Lett. 48(21), 1365 (2012).
[Crossref]

IEEE Access (1)

W. Cheng, H. Zhang, L. Liang, H. Jing, and Z. Li, “Orbital-Angular-Momentum Embedded Massive MIMO: Achieving Multiplicative Spectrum-Efficiency for mmWave Communications,” IEEE Access 6, 2732–2745 (2017).

IEEE Antennas Wirel. Propag. Lett. (3)

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).

X. Hui, S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, “Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam,” IEEE Antennas Wirel. Propag. Lett. 14, 966–969 (2015).
[Crossref]

Z.-G. Guo and G.-M. Yang, “Radial Uniform Circular Antenna Array for Dual-Mode OAM Communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

M. Lin, Y. Gao, P. Liu, and J. Liu, “Theoretical Analyses and Design of Circular Array to Generate Orbital Angular Momentum,” IEEE Trans. Antenn. Propag. 65(7), 3510–3519 (2017).
[Crossref]

H.-X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband Vortex Beam Generation Using Multimode Pancharatnam–Berry Metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

New J. Phys. (1)

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (2)

Phys. Rev. Lett. (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Sci. Rep. (8)

L. Li and X. Zhou, “Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves,” Sci. Rep. 8(1), 5128 (2018).
[Crossref] [PubMed]

G. Xie, Z. Zhao, Y. Yan, L. Li, Y. Ren, N. Ahmed, Y. Cao, A. J. Willner, C. Bao, Z. Wang, C. Liu, M. Ziyadi, S. Talwar, S. Sajuyigbe, S. Ashrafi, M. Tur, A. F. Molisch, and A. E. Willner, “Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array,” Sci. Rep. 6(1), 37078 (2016).
[Crossref] [PubMed]

C. Zhang and L. Ma, “Millimetre Wave with Rotational Orbital Angular Momentum,” Sci. Rep. 6(1), 31921 (2016).
[Crossref] [PubMed]

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(4), 4814 (2014).
[PubMed]

S. Tang, T. Cai, G. M. Wang, J. G. Liang, X. Li, and J. Yu, “High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties,” Sci. Rep. 8(1), 6422 (2018).
[Crossref] [PubMed]

X. D. Bai, X. L. Liang, Y. T. Sun, P. C. Hu, Y. Yao, K. Wang, J. P. Geng, and R. H. Jin, “Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams,” Sci. Rep. 7(4), 40099 (2017).

B. Liu, G. Lin, Y. Cui, and R. Li, “An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding,” Sci. Rep. 7(1), 9852 (2017).
[Crossref] [PubMed]

W. J. Byun, K. S. Kim, B. S. Kim, Y. S. Lee, M. S. Song, H. D. Choi, and Y. H. Cho, “Multiplexed Cassegrain Reflector Antenna for Simultaneous Generation of Three Orbital Angular Momentum (OAM) Modes,” Sci. Rep. 6(1), 27339 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Interleaved geometry of the dual-band element. (b) Geometrical construction of the C-band element. (c) Geometrical construction of the X-band element.
Fig. 2
Fig. 2 (a) Phase response of the C-band element. (b) Phase response of the X-band element. (c) Effect on the C-band element of the X-band element variation when performing at 6 GHz. (d) Effect on the X-band element of the C-band element variation when performing at 10 GHz. (e) Phase response versus the X-band element length, for different offside angles. (f) Phase response versus the C-band element length, for different offside angles.
Fig. 3
Fig. 3 Directions of the OAM beam in the two bands.
Fig. 4
Fig. 4 (a) Compensation phase for the C-band reflectarray at 6 GHz. (b) Compensation phase for the X-band reflectarray at 10 GHz.
Fig. 5
Fig. 5 (a) Configuration of the experimental system for the designed reflectarray using the near-field scanning technology. (b) Photograph of the fabricated reflectarray.
Fig. 6
Fig. 6 (a) Far-field radiation pattern at 10 GHz. (b) Far-field radiation pattern at 6 GHz.
Fig. 7
Fig. 7 (a) Simulated far-field radiation pattern at 9.5 GHz in DB element reflectarray. (b) Simulated far-field radiation pattern at 10.5 GHz in DB element reflectarray. (c) Simulated far-field radiation pattern at 5.5 GHz in DB element reflectarray. (d) Simulated far-field radiation pattern at 6.5 GHz in DB element reflectarray.
Fig. 8
Fig. 8 (a) Measurement of 2D far-field intensity distribution at 10 GHz in DB element reflectarray. (b) Measurement of 2D far-field intensity distribution at 6 GHz in DB element reflectarray.
Fig. 9
Fig. 9 Simulated intensity and phase in the first row in SB element reflectarray. Simulated intensity and phase in the second row in DB element reflectarray. Measured intensity and phase in the third row in DB element reflectarray.
Fig. 10
Fig. 10 Simulated intensity and phase in the first row in DB element reflectarray operating at X-band. Simulated intensity and phase in the second row in DB element reflectarray operating at C-band.
Fig. 11
Fig. 11 (a) Simulated OAM spectrum of l=1 at 9.5 GHz. (b) Simulated OAM spectrum of l=1 at 9.5 GHz. (c) Simulated OAM spectrum of l=1at 10.5 GHz. (d) Simulated OAM spectrum of l=1at 10.5 GHz. (e) Simulated OAM spectrum of l=1at 5.5 GHz. (f) Simulated OAM spectrum of l=1 at 5.5 GHz. (g) Simulated OAM spectrum of l=1 at 6.5 GHz. (h) Simulated OAM spectrum of l=1 at 6.5 GHz.
Fig. 12
Fig. 12 (a) Simulated and measured OAM spectra of l=1 at 10 GHz. (b) Simulated and measured OAM spectra of l=1 at 10 GHz. (c) Simulated and measured OAM spectra of l=1 at 6 GHz. (d) Simulated and measured OAM spectra of l=1 at 6 GHz.

Tables (1)

Tables Icon

Table 1 Parameter Values of the Unit Cell

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ f 1 mn = k 1 | r mn r f |+arg{ i exp[ j( k 1 r mn u ^ i ± l i φ i ) ] }
ϕ f 2 mn = k 2 | r mn r f |+arg{ i exp[ j( k 2 r mn u ^ i ± l i φ i ) ] }
P(α)= 1 2π 0 2π ψ(φ) dφexp(jlφ)
ψ(φ)= + P(α) exp(jlφ).

Metrics