Abstract

The abuse of antibiotics in animal husbandry has been regarded as a daunting public health risk, facilitating the emergence and spread of resistant pathogens to humans. Herein, bimetallic Au@Ag core-shell nanorods (NRs) with precise, controllable Ag shell-thickness (2.1~14.1 nm) were fabricated and developed for ultralow detection of levofloxacin molecules using surface enhanced Raman scattering spectroscopy (SERS). We found that the Au@Ag NRs with 7.3 nm Ag shell-thickness provided maximized SERS activity in comparison with other as-prepared nanosubstrates in this paper. The detection limit of levofloxacin molecules was achieved at a nanomole (nM) level of 0.37 ng/L (10−9 M), providing ultrasensitive assessment of antibiotics in natural ecosystems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Core-shell Au@Ag nanodendrites supported on TiO2 nanowires for blue laser beam-excited SERS-based pH sensing

Anxin Jiao, Hua Zhang, Linlin Xu, Yue Tian, Xiangdong Liu, Ming Chen, and Feng Chen
Opt. Express 27(17) 23981-23995 (2019)

Colorimetric and SERS dual-mode detection of lead Ions based on Au-Ag core-shell nanospheres: featuring quick screening with ultra-high sensitivity

Zheng Zhang, Pei Ma, Junying Li, Yu Sun, Hao Shi, Nan Chen, Xuedian Zhang, and Hui Chen
Opt. Express 27(20) 29248-29260 (2019)

Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments

Yuan Ni, Caixia Kan, Longbing He, Xingzhong Zhu, Mingming Jiang, and Daning Shi
Photon. Res. 7(5) 558-565 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Oliver, S. E. Murinda, and B. M. Jayarao, “Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review,” Foodborne Pathog. Dis. 8(3), 337–355 (2011).
    [Crossref] [PubMed]
  2. N. Kemper, “Veterinary antibiotics in the aquatic and terrestrial environment,” Ecol. Indic. 8(1), 1–13 (2008).
    [Crossref]
  3. Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
    [Crossref] [PubMed]
  4. J. L. Martinez, “Environmental pollution by antibiotics and by antibiotic resistance determinants,” Environ. Pollut. 157(11), 2893–2902 (2009).
    [Crossref] [PubMed]
  5. K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, “Antibiotic use in agriculture and its impact on the terrestrial environment,” Adv. Agron. 87, 1–54 (2005).
    [Crossref]
  6. D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
    [Crossref] [PubMed]
  7. C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
    [Crossref]
  8. Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
    [Crossref] [PubMed]
  9. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  10. J. F. Betz, Y. Cheng, and G. W. Rubloff, “Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula,” Analyst (Lond.) 137(4), 826–828 (2012).
    [Crossref] [PubMed]
  11. M. Park, H. Jung, Y. Jeong, and K. H. Jeong, “Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering,” ACS Nano 11(1), 438–443 (2017).
    [Crossref] [PubMed]
  12. X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
    [Crossref] [PubMed]
  13. H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
    [Crossref]
  14. L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
    [Crossref] [PubMed]
  15. Y. Tian, H. Zhang, L. Xu, M. Chen, and F. Chen, “Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection,” Opt. Lett. 43(4), 635–638 (2018).
    [Crossref] [PubMed]
  16. I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
    [Crossref]
  17. S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
    [Crossref]
  18. I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
    [Crossref] [PubMed]
  19. L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
    [Crossref]
  20. P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
    [Crossref] [PubMed]
  21. T. A. M. Msagati and M. M. Nindi, “Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection,” Talanta 64(1), 87–100 (2004).
    [Crossref] [PubMed]
  22. L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
    [Crossref] [PubMed]
  23. H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials,” Langmuir 24(24), 13833–13837 (2008).
    [Crossref] [PubMed]
  24. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
    [Crossref]
  25. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  26. J. P. Juste, I. P. Santos, L. M. L. Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).
  27. R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
    [Crossref] [PubMed]
  28. Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
    [Crossref]
  29. M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
    [Crossref] [PubMed]
  30. P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
    [Crossref] [PubMed]
  31. M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
    [Crossref]
  32. E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
    [Crossref]
  33. J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
    [Crossref] [PubMed]
  34. Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
    [Crossref] [PubMed]
  35. H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
    [Crossref] [PubMed]
  36. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  37. Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
    [Crossref] [PubMed]
  38. O. Peña-Rodríguez and U. Pal, “Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres,” Nanoscale Res. Lett. 6(1), 279 (2011).
    [Crossref] [PubMed]

2018 (1)

2017 (6)

L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
[Crossref] [PubMed]

H. Zhang, L. L. Xu, Y. Tian, M. Chen, X. D. Liu, and F. Chen, “Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy,” Opt. Express 25(23), 29389–29400 (2017).
[Crossref]

M. Park, H. Jung, Y. Jeong, and K. H. Jeong, “Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering,” ACS Nano 11(1), 438–443 (2017).
[Crossref] [PubMed]

X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
[Crossref] [PubMed]

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

2016 (6)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref] [PubMed]

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

2015 (6)

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
[Crossref] [PubMed]

L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
[Crossref] [PubMed]

Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
[Crossref] [PubMed]

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

2014 (2)

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

2013 (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

2012 (3)

R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[Crossref] [PubMed]

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[Crossref] [PubMed]

J. F. Betz, Y. Cheng, and G. W. Rubloff, “Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula,” Analyst (Lond.) 137(4), 826–828 (2012).
[Crossref] [PubMed]

2011 (3)

O. Peña-Rodríguez and U. Pal, “Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres,” Nanoscale Res. Lett. 6(1), 279 (2011).
[Crossref] [PubMed]

S. P. Oliver, S. E. Murinda, and B. M. Jayarao, “Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review,” Foodborne Pathog. Dis. 8(3), 337–355 (2011).
[Crossref] [PubMed]

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

2009 (1)

J. L. Martinez, “Environmental pollution by antibiotics and by antibiotic resistance determinants,” Environ. Pollut. 157(11), 2893–2902 (2009).
[Crossref] [PubMed]

2008 (3)

N. Kemper, “Veterinary antibiotics in the aquatic and terrestrial environment,” Ecol. Indic. 8(1), 1–13 (2008).
[Crossref]

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials,” Langmuir 24(24), 13833–13837 (2008).
[Crossref] [PubMed]

2005 (2)

J. P. Juste, I. P. Santos, L. M. L. Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).

K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, “Antibiotic use in agriculture and its impact on the terrestrial environment,” Adv. Agron. 87, 1–54 (2005).
[Crossref]

2004 (1)

T. A. M. Msagati and M. M. Nindi, “Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection,” Talanta 64(1), 87–100 (2004).
[Crossref] [PubMed]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

2000 (1)

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

1997 (1)

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Agarwal, A.

H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials,” Langmuir 24(24), 13833–13837 (2008).
[Crossref] [PubMed]

Arnold, M. D.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[Crossref] [PubMed]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Bao, Z. H.

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

Barrow, S. J.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Baumberg, J. J.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Benz, F.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Betz, J. F.

J. F. Betz, Y. Cheng, and G. W. Rubloff, “Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula,” Analyst (Lond.) 137(4), 826–828 (2012).
[Crossref] [PubMed]

Birke, R. L.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Cadahía, O.

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

Cañamares, M. V.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Cao, C.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Carnegie, C.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Cepeda, A.

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

Chander, Y.

K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, “Antibiotic use in agriculture and its impact on the terrestrial environment,” Adv. Agron. 87, 1–54 (2005).
[Crossref]

Chang, Q.

Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
[Crossref] [PubMed]

Chen, F.

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[Crossref] [PubMed]

Chen, H. J.

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

Chen, M.

Chen, N.

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

Chen, Y. F.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Chen, Z. Y.

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Chenal, C.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Cheng, W.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Cheng, Y.

J. F. Betz, Y. Cheng, and G. W. Rubloff, “Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula,” Analyst (Lond.) 137(4), 826–828 (2012).
[Crossref] [PubMed]

Chikkaraddy, R.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Cialla-May, D.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
[Crossref] [PubMed]

Cortie, M. B.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[Crossref] [PubMed]

de Nijs, B.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Deacon, W. M.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Fang, J.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Fente, C. A.

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

Franco, C. M.

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

Fu, Z. W.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Gigosos, P. G.

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

Gong, M. D.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Gong, S.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Guo, P.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Gupta, S. C.

K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, “Antibiotic use in agriculture and its impact on the terrestrial environment,” Adv. Agron. 87, 1–54 (2005).
[Crossref]

Han, X. X.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Hanage, W. P.

Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
[Crossref] [PubMed]

Hidi, I. J.

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
[Crossref] [PubMed]

Horton, M.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Hu, L. S.

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

Huang, J.

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

Huang, X.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Huo, Y.

Jahn, M.

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
[Crossref] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Jayarao, B. M.

S. P. Oliver, S. E. Murinda, and B. M. Jayarao, “Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review,” Foodborne Pathog. Dis. 8(3), 337–355 (2011).
[Crossref] [PubMed]

Jeong, K. H.

M. Park, H. Jung, Y. Jeong, and K. H. Jeong, “Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering,” ACS Nano 11(1), 438–443 (2017).
[Crossref] [PubMed]

Jeong, Y.

M. Park, H. Jung, Y. Jeong, and K. H. Jeong, “Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering,” ACS Nano 11(1), 438–443 (2017).
[Crossref] [PubMed]

Jiang, R.

R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[Crossref] [PubMed]

Jiang, S.

Jiang, X.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Jin, X.

X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
[Crossref] [PubMed]

Jung, H.

M. Park, H. Jung, Y. Jeong, and K. H. Jeong, “Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering,” ACS Nano 11(1), 438–443 (2017).
[Crossref] [PubMed]

Juste, J. P.

J. P. Juste, I. P. Santos, L. M. L. Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).

Kemper, N.

N. Kemper, “Veterinary antibiotics in the aquatic and terrestrial environment,” Ecol. Indic. 8(1), 1–13 (2008).
[Crossref]

Khanadeev, V. A.

X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
[Crossref] [PubMed]

Khlebtsov, B. N.

X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
[Crossref] [PubMed]

Khlebtsov, N. G.

X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
[Crossref] [PubMed]

Kiefer, W.

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Kotov, N. A.

H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials,” Langmuir 24(24), 13833–13837 (2008).
[Crossref] [PubMed]

Kumar, K.

K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, “Antibiotic use in agriculture and its impact on the terrestrial environment,” Adv. Agron. 87, 1–54 (2005).
[Crossref]

Lavrentovich, O. D.

H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials,” Langmuir 24(24), 13833–13837 (2008).
[Crossref] [PubMed]

Li, C.

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[Crossref] [PubMed]

Li, S.

Li, Z.

Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref] [PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Liang, E. J.

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Lipsitch, M.

Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
[Crossref] [PubMed]

Liu, F.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[Crossref] [PubMed]

Liu, J.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Liu, M.

Liu, S. P.

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

Liu, X.

Liu, X. D.

Liu, Z.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Lombardi, J. R.

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

Lv, M. Y.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Man, B.

Martinez, J. L.

J. L. Martinez, “Environmental pollution by antibiotics and by antibiotic resistance determinants,” Environ. Pollut. 157(11), 2893–2902 (2009).
[Crossref] [PubMed]

Marzan, L. M. L.

J. P. Juste, I. P. Santos, L. M. L. Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).

May, D. C.

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

Meng, L.

L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
[Crossref] [PubMed]

Meng, P.

L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
[Crossref] [PubMed]

Msagati, T. A. M.

T. A. M. Msagati and M. M. Nindi, “Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection,” Talanta 64(1), 87–100 (2004).
[Crossref] [PubMed]

Mulvaney, P.

J. P. Juste, I. P. Santos, L. M. L. Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).

Murinda, S. E.

S. P. Oliver, S. E. Murinda, and B. M. Jayarao, “Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review,” Foodborne Pathog. Dis. 8(3), 337–355 (2011).
[Crossref] [PubMed]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Niidome, Y.

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[Crossref] [PubMed]

Nindi, M. M.

T. A. M. Msagati and M. M. Nindi, “Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection,” Talanta 64(1), 87–100 (2004).
[Crossref] [PubMed]

Oliver, S. P.

S. P. Oliver, S. E. Murinda, and B. M. Jayarao, “Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review,” Foodborne Pathog. Dis. 8(3), 337–355 (2011).
[Crossref] [PubMed]

Pal, U.

O. Peña-Rodríguez and U. Pal, “Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres,” Nanoscale Res. Lett. 6(1), 279 (2011).
[Crossref] [PubMed]

Pang, F. F.

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

Park, H. S.

H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials,” Langmuir 24(24), 13833–13837 (2008).
[Crossref] [PubMed]

Park, M.

M. Park, H. Jung, Y. Jeong, and K. H. Jeong, “Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering,” ACS Nano 11(1), 438–443 (2017).
[Crossref] [PubMed]

Peña-Rodríguez, O.

O. Peña-Rodríguez and U. Pal, “Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres,” Nanoscale Res. Lett. 6(1), 279 (2011).
[Crossref] [PubMed]

Peng, B.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Pletz, M. W.

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

Popp, J.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
[Crossref] [PubMed]

Premaratne, M.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Qin, D.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

Readman, C.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Regev-Yochay, G.

Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
[Crossref] [PubMed]

Revesado, P. R.

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

Rubloff, G. W.

J. F. Betz, Y. Cheng, and G. W. Rubloff, “Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula,” Analyst (Lond.) 137(4), 826–828 (2012).
[Crossref] [PubMed]

Santos, I. P.

J. P. Juste, I. P. Santos, L. M. L. Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).

Scherman, O. A.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[Crossref] [PubMed]

Sheng, Y.

Shi, C. A.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Si, K. J.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Sikdar, D.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Singh, A. K.

K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, “Antibiotic use in agriculture and its impact on the terrestrial environment,” Adv. Agron. 87, 1–54 (2005).
[Crossref]

Song, K.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Su, D.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Sun, X.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Sun, X. D.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Sun, Z. H.

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

Tian, L. W.

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

Tian, Y.

Vazquez, B. I.

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

Wang, D.

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[Crossref] [PubMed]

Wang, J. F.

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

Wang, M. L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Wang, T. Y.

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

Wang, W.

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
[Crossref] [PubMed]

Weber, K.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
[Crossref] [PubMed]

Winget, S. A.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Wu, Y.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Wu, Z. L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Xiao, M. D.

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

Xie, Z. X.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Xiong, Q.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Xiong, W.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Xu, H. J.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Xu, L.

Xu, L. L.

Yang, C.

Yang, L. B.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Yang, Y.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Yap, L. W.

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Ye, J.

X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
[Crossref] [PubMed]

Ye, X. L.

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

Yin, H. J.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

You, H.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Zhang, C.

Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref] [PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhang, W.

L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
[Crossref] [PubMed]

Zhang, X.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Zhang, Y. J.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Zhao, B.

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Zhao, Y. M.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zheng, K.

L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
[Crossref] [PubMed]

Zheng, X. S.

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

Zhu, B.

L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

X. Jin, B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov, and J. Ye, “Rational design of ultrabright SERS probes with embedded reporters for bioimaging and photothermal therapy,” ACS Appl. Mater. Interfaces 9(36), 30387–30397 (2017).
[Crossref] [PubMed]

ACS Nano (2)

M. Park, H. Jung, Y. Jeong, and K. H. Jeong, “Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering,” ACS Nano 11(1), 438–443 (2017).
[Crossref] [PubMed]

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

C. Carnegie, R. Chikkaraddy, F. Benz, B. de Nijs, W. M. Deacon, M. Horton, W. Wang, C. Readman, S. J. Barrow, O. A. Scherman, and J. J. Baumberg, “Mapping SERS in CB: Au plasmonic nanoaggregates,” ACS Photonics 4(11), 2681–2686 (2017).
[Crossref]

Adv. Agron. (1)

K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, “Antibiotic use in agriculture and its impact on the terrestrial environment,” Adv. Agron. 87, 1–54 (2005).
[Crossref]

Adv. Mater. (2)

R. Jiang, H. Chen, L. Shao, Q. Li, and J. Wang, “Unraveling the evolution and nature of the plasmons in (Au core)-(Ag shell) nanorods,” Adv. Mater. 24(35), OP200–OP207 (2012).
[Crossref] [PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Analyst (Lond.) (1)

J. F. Betz, Y. Cheng, and G. W. Rubloff, “Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula,” Analyst (Lond.) 137(4), 826–828 (2012).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

D. Cialla-May, X. S. Zheng, K. Weber, and J. Popp, “Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).
[Crossref] [PubMed]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Colloid Surf. A- Physicochem. Eng. Asp. (1)

L. B. Yang, M. D. Gong, X. Jiang, Y. F. Chen, X. X. Han, K. Song, X. D. Sun, Y. J. Zhang, and B. Zhao, “SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: charge transfer contribution,” Colloid Surf. A- Physicochem. Eng. Asp. 508, 142–149 (2016).
[Crossref]

Coord. Chem. Rev. (1)

J. P. Juste, I. P. Santos, L. M. L. Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249(17–18), 1870–1901 (2005).

Ecol. Indic. (1)

N. Kemper, “Veterinary antibiotics in the aquatic and terrestrial environment,” Ecol. Indic. 8(1), 1–13 (2008).
[Crossref]

Environ. Pollut. (1)

J. L. Martinez, “Environmental pollution by antibiotics and by antibiotic resistance determinants,” Environ. Pollut. 157(11), 2893–2902 (2009).
[Crossref] [PubMed]

Evol. Appl. (1)

Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch, and W. P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?” Evol. Appl. 8(3), 240–247 (2015).
[Crossref] [PubMed]

Foodborne Pathog. Dis. (1)

S. P. Oliver, S. E. Murinda, and B. M. Jayarao, “Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review,” Foodborne Pathog. Dis. 8(3), 337–355 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

J. Chromatogr. A (1)

P. G. Gigosos, P. R. Revesado, O. Cadahía, C. A. Fente, B. I. Vazquez, C. M. Franco, and A. Cepeda, “Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiode-array detection,” J. Chromatogr. A 871(1-2), 31–36 (2000).
[Crossref] [PubMed]

J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (1)

L. Meng, W. Zhang, P. Meng, B. Zhu, and K. Zheng, “Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 46–53 (2015).
[Crossref] [PubMed]

J. Mater. Chem. (1)

Z. H. Bao, Z. H. Sun, M. D. Xiao, H. J. Chen, L. W. Tian, and J. F. Wang, “Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide,” J. Mater. Chem. 21(31), 11537–11543 (2011).
[Crossref]

J. Phys. Chem. A (1)

E. J. Liang, X. L. Ye, and W. Kiefer, “Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation,” J. Phys. Chem. A 101(40), 7330–7335 (1997).
[Crossref]

J. Phys. Chem. B (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

J. Phys. Chem. C (2)

M. V. Cañamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
[Crossref]

I. J. Hidi, M. Jahn, M. W. Pletz, K. Weber, D. C. May, and J. Popp, “Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique,” J. Phys. Chem. C 120(37), 20613–20623 (2016).
[Crossref]

J. Raman Spectrosc. (1)

S. P. Liu, J. Huang, Z. Y. Chen, N. Chen, F. F. Pang, T. Y. Wang, and L. S. Hu, “Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe,” J. Raman Spectrosc. 46(2), 197–201 (2015).
[Crossref]

Langmuir (2)

M. B. Cortie, F. Liu, M. D. Arnold, and Y. Niidome, “Multimode resonances in silver nanocuboids,” Langmuir 28(24), 9103–9112 (2012).
[Crossref] [PubMed]

H. S. Park, A. Agarwal, N. A. Kotov, and O. D. Lavrentovich, “Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials,” Langmuir 24(24), 13833–13837 (2008).
[Crossref] [PubMed]

Nano Lett. (2)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Nanoscale (1)

P. Guo, D. Sikdar, X. Huang, K. J. Si, W. Xiong, S. Gong, L. W. Yap, M. Premaratne, and W. Cheng, “Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement,” Nanoscale 7(7), 2862–2868 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

O. Peña-Rodríguez and U. Pal, “Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres,” Nanoscale Res. Lett. 6(1), 279 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

I. J. Hidi, M. Jahn, K. Weber, D. Cialla-May, and J. Popp, “Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection,” Phys. Chem. Chem. Phys. 17(33), 21236–21242 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Talanta (1)

T. A. M. Msagati and M. M. Nindi, “Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection,” Talanta 64(1), 87–100 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The typical low-magnification TEM (a) and SEM (b) images of Au NRs prepared by seed-mediated growth method. (c) The HRTEM image of an individual Au NRs.
Fig. 2
Fig. 2 The representative structures of Au@Ag core-shell NRs with different Ag shell thickness produced by wet chemical method. [(a)-(d), (e)-(h)] TEM, elemental mapping, SEM, and HRTEM image of 7.3 nm and 14.1 nm Ag shell-decorated Au NRs, respectively.
Fig. 3
Fig. 3 XRD spectra of Au NRs and Au@Ag core-shell NRs with 7.3 nm shell thickness.
Fig. 4
Fig. 4 (a) Direct photographs of Au NRs and Au@Ag NRs solutions with different Ag shell thicknesses (on the left) and geometrical models of the corresponding shapes (on the right). (b) The UV-visible absorption spectra of the corresponding Au NRs and Au@Ag NRs solutions, (c) Evolutions of the peak positions (A, B, C and D plasmon bands) versus the Ag shell thickness.
Fig. 5
Fig. 5 (a) SERS spectra of Au@Ag NRs with different thickness of Ag shell (0, 2.1 nm, 7.3 nm, 11.9 nm, 14.1 nm) in 10−6 M CV. The inset is the CV molecular structure. (b) Variations of diverse Raman signal peaks with Ag shell thickness.
Fig. 6
Fig. 6 FDTD calculations of relative electric field intensities for longitudinal and transverse plasmon excitation of individual Au NRs (a-b), Au@Ag NRs with 7.3 nm Ag shell (c-d), and Au@Ag NRs with 14.1 nm Ag shell (e-f), respectively.
Fig. 7
Fig. 7 (a) SERS spectra of levofloxacin solutions with different concentrations (10−4-10−9 M) absorbed on the optimal Au@Ag NRs with7.3 nm Ag shell. The inset is the levofloxacin molecular structure. (b) The plot of intensities of the SERS peaks at 1337, 1396, 1614 cm−1 versus the concentration.

Tables (1)

Tables Icon

Table 1 Amounts of AgNO3 and AA solution in Au@Ag core-shell NRs synthesis with varying Ag shell thickness.

Metrics