Abstract

This paper presents a micro-machined, high-resolution refractive index sensor suitable for monitoring of small changes in the composition of gases. Experimentally demonstrated measurement resolution, induced by gas composition variation, proved to be in the range of 5x10-9 of a Refractive Index Unit (RIU). The proposed all-silica, all-fiber sensor consists of an open-path Fabry-Perot micro-cavity that includes an in-fiber collimation and temperature-sensing segment. It is shown that a sensor’s resolution depends strongly on the signal interrogator’s properties and that, for a given interrogator, there is an optimum Fabry-Perot cavity length that yields the highest system resolution. Furthermore, high-resolution pressure and in situ temperature compositions of measurement results are required to obtain an unambiguous correlation between the gas composition and measured Refractive Index within the presented resolution range.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing

Xue Wang, Shuang Wang, Junfeng Jiang, Kun Liu, Peng Zhang, Wen Wu, and Tiegen Liu
Opt. Express 27(4) 4204-4215 (2019)

Dual parameter fiber-integrated sensor for refractive index and temperature measurement based on Fabry–Perot micro-resonators

Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Appl. Opt. 58(8) 2076-2080 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
    [Crossref] [PubMed]
  2. Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
    [Crossref]
  3. B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).
  4. T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
    [Crossref]
  5. A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
    [Crossref]
  6. J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
    [Crossref]
  7. B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
    [Crossref]
  8. S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65(2), 167–180 (2002).
    [Crossref]
  9. “Density- & Refractometers: Qualitive Control Tailored to Your Needs” (Mason Technology, 2008), retrieved http://www.masontechnology.ie/files/documents/MT6.pdf .
  10. “Refractive Index of Essential Oils” (Anton Paar, 2018), retrieved https://www.anton-paar.com/?eID=documentsDownload&document=55049&L=0 .
  11. A. Paar, “Determination of Moisture in Honey by Refractive Index” (Anton Paar, 2018), retrieved https://www.anton-paar.com/?eID=documentsDownload&document=31210&L=0 .
  12. R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
    [Crossref]
  13. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref] [PubMed]
  14. R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
    [Crossref]
  15. G. H. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912 (2012).
    [Crossref]
  16. R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
    [Crossref] [PubMed]
  17. V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).
  18. Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
  19. J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
    [Crossref]
  20. T. Wang, K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, “Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution,” Opt. Express 25(13), 14900–14909 (2017).
    [Crossref] [PubMed]
  21. K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
  22. P. Chen, X. Shu, H. Cao, and K. Sugden, “Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure,” Opt. Lett. 42(6), 1157–1160 (2017).
    [Crossref] [PubMed]
  23. J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl. Opt. 57(15), 4002–4007 (2018).
    [Crossref] [PubMed]
  24. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
    [Crossref]
  25. D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
  26. X.-G. H. Jia-Rong Zhao, Wei-Xin He, Ji-Huan Chen, J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-Resolution and Temperature-Insensitive Optic Refractive Index Sensor Based on Fresnel Reflection Modulated by Fabry–Perot Interference,” J. Lightwave Technol. 28, 2799 (2010).
  27. M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
    [Crossref]
  28. C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
    [Crossref]
  29. J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
    [Crossref]
  30. Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
    [Crossref]
  31. B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
    [Crossref]
  32. D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
    [Crossref]
  33. R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
    [Crossref]
  34. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
    [Crossref]
  35. D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
    [Crossref] [PubMed]
  36. E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
    [Crossref] [PubMed]
  37. E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
    [Crossref] [PubMed]
  38. S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
    [Crossref] [PubMed]
  39. R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
    [Crossref]
  40. J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
    [Crossref]
  41. S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
    [Crossref] [PubMed]
  42. S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
    [Crossref]
  43. “MS5611-01BA03 Barometric Pressure Sensor, with stainless steel cap ” (TE connectivity, 2017), retrieved http://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet%7FMS5611-01BA03%7FB3%7Fpdf%7FEnglish%7FENG_DS_MS5611-01BA03_B3.pdf%7FCAT-BLPS0036 .
  44. D. F. J. Arago and J. B. Biot, Mem. Acad. Fr. 7(1806).

2018 (4)

Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).

D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]

R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]

J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl. Opt. 57(15), 4002–4007 (2018).
[Crossref] [PubMed]

2017 (11)

D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).

S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]

P. Chen, X. Shu, H. Cao, and K. Sugden, “Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure,” Opt. Lett. 42(6), 1157–1160 (2017).
[Crossref] [PubMed]

T. Wang, K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, “Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution,” Opt. Express 25(13), 14900–14909 (2017).
[Crossref] [PubMed]

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]

T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]

2016 (4)

A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]

J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]

2015 (7)

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).

R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref] [PubMed]

S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

2012 (2)

G. H. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912 (2012).
[Crossref]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]

2011 (2)

D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
[Crossref] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]

2010 (2)

2005 (1)

2002 (1)

S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]

1863 (1)

J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]

An, G. W.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Andres, M. V.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Apel, A. C.

T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]

Bartl, G.

R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]

Bello-Jimenez, M. A.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Bruck, T.

T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]

Buikin, A. I.

A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]

Cao, H.

Chang, P.

Chao, D.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Chen, H. L.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Chen, J. H.

Chen, J. P.

J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Chen, Ji-Huan

Chen, M. Y.

J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Chen, P.

Cheng, J. H.

J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]

Chow, K. K.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]

Cibula, E.

Dale, T. P.

J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]

De Leonardis, F.

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]

Donlagic, D.

S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]

S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
[Crossref] [PubMed]

S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref] [PubMed]

D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
[Crossref] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
[Crossref] [PubMed]

E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[Crossref] [PubMed]

Duan, G. H.

Fan, Z. K.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Farsari, M.

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).

Feng, X.

Fu, C. L.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Gladstone, J. H.

J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]

He, J. W.

He, W. X.

He, Wei-Xin

He, Y. X.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Hernandez-Arriaga, M. V.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Hu, J. F.

D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).

Huang, P. C.

Huang, X. G.

Ji, W. B.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]

Jiang, J.

Jia-Rong Zhao, X.-G. H.

Kapoor, A.

D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]

Katsikas, S.

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Kiefer, C.

B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]

Kuznetsova, O. V.

A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]

Lenardic, B.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]

Li, D. M.

D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).

Li, H.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Li, J. J.

J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]

Li, J. S.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Li, K. W.

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

Li, R. X.

J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]

Li, S.

Li, S. G.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Liao, C. R.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Lim, A.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]

Liu, G. G.

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

Liu, H.

D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).

Liu, H. H.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]

Liu, K.

Liu, Q.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Liu, S.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Liu, T.

Liu, T. G.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Liu, Y.

Liu, Z. W.

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]

Lopez-Estopier, R.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Madaan, D.

D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]

Markos, C.

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Matjasec, Z.

Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]

Melissinaki, V.

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).

Meristoudi, A.

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Nevinny, Y. A.

A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]

Ouyang, Y.

Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).

Papadopoulos, A.

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Passaro, V. M. N.

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]

Pevec, S.

S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
[Crossref] [PubMed]

S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]

Pissadakis, S.

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).

Plamauer, S.

T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]

Qiao, X.

Qiao, X. G.

R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]

R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]

Quan, M.

Rao, Y. J.

Riziotis, C.

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Rodriguez-Cobos, A.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Sachat, A. E.

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Sakellariou, A.

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Schmitt, B.

B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).

B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]

Schodel, R.

R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]

Schutze, A.

B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).

B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]

Sevast’yanov, V. S.

A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]

Severin, T. S.

T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]

Sharma, V. K.

D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]

Shi, J.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Shi, M.

Shu, X.

Singh, S.

S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]

Sugden, K.

Tang, J.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Tang, L. H.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Tian, J.

Tian, W. L.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Tjin, S. C.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]

Troia, B.

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]

Voigt, M.

R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]

Walkov, A.

R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]

Wang, N.

J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]

Wang, Q.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Wang, R.

Wang, R. H.

R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]

R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]

Wang, T.

Wang, X.

Wang, Y.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Wang, Y. P.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Wang, Y. Y.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Wei, L.

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

Weuster-Botz, D.

T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]

Wu, J.

Xu, D. G.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Xu, W.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Xu, X.

Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).

Xue, M.

Yan, C.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Yan, D. X.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Yao, J. Q.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Yao, Y.

Yuan, L.

Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).

Yujia, Z.

Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).

Zhang, C.

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

Zhang, H. P.

J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Zhang, M. Y.

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

Zhang, N.

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

Zhang, Q.

J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Zhang, T.

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

Zhang, W.

D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).

Zhao, B. S.

J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]

Zhao, J. R.

Zhong, X. Y.

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Zhou, A.

Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).

Zhou, G. Y.

D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).

Zhou, J.

J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Zhu, T.

Zi, J. C.

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Anal Methods-UK (1)

J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).

Chem. Eng. Sci. (1)

T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]

Geochem. Int. (1)

A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).

IEEE Photonic Tech Lett (4)

J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]

R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]

D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]

IEEE Photonic Tech Lett. (1)

Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).

IEEE Photonics J. (5)

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]

C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).

S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

IEEE Sens. J. (2)

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]

Microsyst. Technol. (1)

B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Philos. Trans. R. Soc. Lond. (1)

J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]

Phys. Scr. (1)

S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]

Sens. Actuators B Chem. (3)

Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]

R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]

Sensor Actuat. A-Phys. (1)

B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).

Sensors (Basel) (1)

A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref] [PubMed]

Other (5)

“Density- & Refractometers: Qualitive Control Tailored to Your Needs” (Mason Technology, 2008), retrieved http://www.masontechnology.ie/files/documents/MT6.pdf .

“Refractive Index of Essential Oils” (Anton Paar, 2018), retrieved https://www.anton-paar.com/?eID=documentsDownload&document=55049&L=0 .

A. Paar, “Determination of Moisture in Honey by Refractive Index” (Anton Paar, 2018), retrieved https://www.anton-paar.com/?eID=documentsDownload&document=31210&L=0 .

“MS5611-01BA03 Barometric Pressure Sensor, with stainless steel cap ” (TE connectivity, 2017), retrieved http://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet%7FMS5611-01BA03%7FB3%7Fpdf%7FEnglish%7FENG_DS_MS5611-01BA03_B3.pdf%7FCAT-BLPS0036 .

D. F. J. Arago and J. B. Biot, Mem. Acad. Fr. 7(1806).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Sensor design.
Fig. 2
Fig. 2 Production process.
Fig. 3
Fig. 3 Several produced sensors with different open path FP cavity lengths under an optical microscope.
Fig. 4
Fig. 4 Scanning Electron Microscopic image of a typical sensor.
Fig. 5
Fig. 5 (a) Back reflected optical spectrum with applied Gaussian window, (b) Inverse Discrete Fourier Transform with corresponding time axis and axis converted in optical path length (multiplied by c/2). Fig. also shows comparison between collimated and non-collimated sensor.
Fig. 6
Fig. 6 Experimental setup.
Fig. 7
Fig. 7 Calculated RMS of RIU noise: (a) Comparison between NI PXIe and FAZT I4, estimation was made using 9 sensors with different open path cavity lengths (log axis), (b) Zoom-in of FAZT I4 results shown for sensors longer than 250 μm (linear axis).
Fig. 8
Fig. 8 (a) Experimental demonstration of the system’s measurement resolution using gas injections that cause RI changes of 5x10−9 RIU at a bandwidth of 0.025 Hz (averaging of 650 samples), (b) Same as a) but using gas injections that cause RI changes of 7.5x10−9 RIU at a bandwidth of 0.1 Hz (averaging of 160 samples).
Fig. 9
Fig. 9 Response of the produced sensor to RI change by insertion of CO2 in pure N2: (a) Measurements taken at a broad range of RI change, (b) Measurements of low concentration changes equal to 210 ppmv of CO2.
Fig. 10
Fig. 10 Efficiency of pressure compensation: (a) Comparison between compensated and not compensated RI change, (b) Variation of the pressure during the experiment at room temperature (temperature varied by less than 0.02 °C during the experiment).
Fig. 11
Fig. 11 Temperature – pressure compensation, when varying temperature at atmospheric pressure: (a) Comparison between compensated and not compensated RI change, (b) Variation of temperature and pressure during the experiment, (c) Fully compensated RI response (@ 0.08 Hz interrogation system bandwidth – averaging of 200 samples).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δn= 1 S RI Δ λ RI
λ m = 4nL ( 1+2m ) m=0,1,2...d λ m = 4L ( 1+2m ) dn
d λ m = λ m n dn S RI = λ m n
ΔT= 1 S T Δ λ T .
S T = λ n ( dn dT ) Si O 2 .
Δ( nL )=LCTEΔT+L ( dn dT ) gas ΔT=( CTE+ ( dn dT ) gas )LΔT.
Δ n T =( CTE+ ( dn dT ) gas )ΔT= K T ΔT.
Δ n T = k 0 + k 1 ΔT+ k 2 Δ T 2 + k 3 Δ T 3 + k 4 Δ T 4 = f T (T).
n1 ρ =const.
Δ n P = K P ΔP.
Δ n comp = 1 S RI d λ RI K P dP f T (T)
Δ( nL )= λ 4π Δϕ

Metrics