Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]
R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]
J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl. Opt. 57(15), 4002–4007 (2018).
[Crossref]
[PubMed]
D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]
R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]
P. Chen, X. Shu, H. Cao, and K. Sugden, “Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure,” Opt. Lett. 42(6), 1157–1160 (2017).
[Crossref]
[PubMed]
T. Wang, K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, “Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution,” Opt. Express 25(13), 14900–14909 (2017).
[Crossref]
[PubMed]
B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]
M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]
T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]
A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]
J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).
R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]
M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref]
[PubMed]
S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
[Crossref]
[PubMed]
S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref]
[PubMed]
R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
[Crossref]
[PubMed]
B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]
J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]
G. H. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912 (2012).
[Crossref]
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]
E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
[Crossref]
[PubMed]
X.-G. H. Jia-Rong Zhao, Wei-Xin He, Ji-Huan Chen, J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-Resolution and Temperature-Insensitive Optic Refractive Index Sensor Based on Fresnel Reflection Modulated by Fabry–Perot Interference,” J. Lightwave Technol. 28, 2799 (2010).
S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]
J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]
T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]
R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]
M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]
T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]
A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]
J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]
J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]
S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]
E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
[Crossref]
[PubMed]
E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[Crossref]
[PubMed]
J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]
B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]
S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]
Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]
S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
[Crossref]
[PubMed]
S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref]
[PubMed]
D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
[Crossref]
[PubMed]
S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]
E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
[Crossref]
[PubMed]
E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[Crossref]
[PubMed]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]
D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]
D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]
A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]
S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]
D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]
M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]
D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]
V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]
Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]
S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]
S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
[Crossref]
[PubMed]
S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref]
[PubMed]
S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]
V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).
T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]
R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]
R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]
R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).
B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]
R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]
B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).
B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]
A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]
T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]
D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]
B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]
R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]
R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]
J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]
R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]
R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
J. J. Li, R. X. Li, B. S. Zhao, N. Wang, and J. H. Cheng, “Quantitative analysis and measurement of carbon isotopic compositions in individual fluid inclusions by micro-laser Raman spectrometry,” Anal Methods-UK 8(37), 6730–6738 (2016).
[Crossref]
R. H. Wang, P. C. Huang, J. W. He, and X. G. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Perot interferometer,” Appl. Opt. 56(1), 50–54 (2017).
[Crossref]
R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
[Crossref]
[PubMed]
J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl. Opt. 57(15), 4002–4007 (2018).
[Crossref]
[PubMed]
E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[Crossref]
[PubMed]
K. W. Li, T. Zhang, G. G. Liu, N. Zhang, M. Y. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109, 13–16 (2016).
T. S. Severin, S. Plamauer, A. C. Apel, T. Bruck, and D. Weuster-Botz, “Rapid salinity measurements for fluid flow characterisation using minimal invasive sensors,” Chem. Eng. Sci. 166, 161–167 (2017).
[Crossref]
A. I. Buikin, O. V. Kuznetsova, V. S. Sevast’yanov, and Y. A. Nevinny, “A New Injection Technique of Microquantity of Water from Fluid Inclusions into Mass Spectrometer for Measurement of Hydrogen and Oxygen Isotope Compositions,” Geochem. Int. 54(2), 205–207 (2016).
[Crossref]
V. Melissinaki, M. Farsari, and S. Pissadakis, “A Fiber-Endface, Fabry-Perot Vapor Microsensor Fabricated by Multiphoton Polymerization,” IEEE J. Sel. Top. Quantum Electron. 21, 344 (2015).
J. Shi, Y. Y. Wang, D. G. Xu, T. G. Liu, W. Xu, C. Zhang, C. Yan, D. X. Yan, L. H. Tang, Y. X. He, and J. Q. Yao, “Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser,” IEEE Photonic Tech Lett 29(20), 1743–1746 (2017).
[Crossref]
R. H. Wang and X. G. Qiao, “Gas Refractometer Based on Optical Fiber Extrinsic Fabry-Perot Interferometer With Open Cavity,” IEEE Photonic Tech Lett 27(3), 245–248 (2015).
[Crossref]
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonic Tech Lett 24(20), 1872–1874 (2012).
[Crossref]
D. Madaan, A. Kapoor, and V. K. Sharma, “Ultrahigh Sensitivity Plasmonic Refractive-Index Sensor for Aqueous Environment,” IEEE Photonic Tech Lett 30(2), 149–152 (2018).
[Crossref]
Y. Ouyang, X. Xu, Z. Yujia, A. Zhou, and L. Yuan, “Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers,” IEEE Photonic Tech Lett. 30, 1262 (2018).
S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J. 3(4), 627–632 (2011).
[Crossref]
C. L. Fu, X. Y. Zhong, C. R. Liao, Y. P. Wang, Y. Wang, J. Tang, S. Liu, and Q. Wang, “Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]
Z. K. Fan, S. G. Li, Q. Liu, G. W. An, H. L. Chen, J. S. Li, D. Chao, H. Li, J. C. Zi, and W. L. Tian, “High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]
D. M. Li, W. Zhang, H. Liu, J. F. Hu, and G. Y. Zhou, “High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength,” IEEE Photonics J. 9, 1 (2017).
S. Pevec and D. Donlagic, “MultiParameter Fiber-Optic Sensor for Simultaneous Measurement of Thermal Conductivity, Pressure, Refractive Index, and Temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]
M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]
J. P. Chen, J. Zhou, Q. Zhang, H. P. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]
R. Schodel, A. Walkov, M. Voigt, and G. Bartl, “Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae,” Meas. Sci. Technol. 29(6), 064002 (2018).
[Crossref]
B. Schmitt, C. Kiefer, and A. Schutze, “Microthermal sensors for determining fluid composition and flow rate in fluidic systems,” Microsyst. Technol. 20(4-5), 641–652 (2014).
[Crossref]
T. Wang, K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, “Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution,” Opt. Express 25(13), 14900–14909 (2017).
[Crossref]
[PubMed]
E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
[Crossref]
[PubMed]
S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref]
[PubMed]
S. Pevec and D. Donlagic, “Miniature all-silica fiber-optic sensor for simultaneous measurement of relative humidity and temperature,” Opt. Lett. 40(23), 5646–5649 (2015).
[Crossref]
[PubMed]
M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref]
[PubMed]
P. Chen, X. Shu, H. Cao, and K. Sugden, “Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure,” Opt. Lett. 42(6), 1157–1160 (2017).
[Crossref]
[PubMed]
D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
[Crossref]
[PubMed]
J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Philos. Trans. R. Soc. Lond. 153(0), 317–343 (1863).
[Crossref]
S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]
Z. Matjasec and D. Donlagic, “All-optical, all-fiber, thermal conductivity sensor for identification and characterization of fluids,” Sens. Actuators B Chem. 242, 577–585 (2017).
[Crossref]
R. H. Wang, Z. W. Liu, and X. G. Qiao, “Fringe visibility enhanced Fabry-Perot interferometer and its application as gas refractometer,” Sens. Actuators B Chem. 234, 498–502 (2016).
[Crossref]
B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).
[Crossref]
B. Schmitt and A. Schutze, “Modelling and characterization of a multiparameter hot disk sensor for determination of fluid mixture ratios,” Sensor Actuat. A-Phys. 235, 210–217 (2015).
A. E. Sachat, A. Meristoudi, C. Markos, A. Sakellariou, A. Papadopoulos, S. Katsikas, and C. Riziotis, “Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors,” Sensors (Basel) 17(3), 568 (2017).
[Crossref]
[PubMed]
“Density- & Refractometers: Qualitive Control Tailored to Your Needs” (Mason Technology, 2008), retrieved http://www.masontechnology.ie/files/documents/MT6.pdf .
“Refractive Index of Essential Oils” (Anton Paar, 2018), retrieved https://www.anton-paar.com/?eID=documentsDownload&document=55049&L=0 .
A. Paar, “Determination of Moisture in Honey by Refractive Index” (Anton Paar, 2018), retrieved https://www.anton-paar.com/?eID=documentsDownload&document=31210&L=0 .
“MS5611-01BA03 Barometric Pressure Sensor, with stainless steel cap ” (TE connectivity, 2017), retrieved http://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet%7FMS5611-01BA03%7FB3%7Fpdf%7FEnglish%7FENG_DS_MS5611-01BA03_B3.pdf%7FCAT-BLPS0036 .
D. F. J. Arago and J. B. Biot, Mem. Acad. Fr. 7(1806).