Abstract

We computationally study periodic impedance-matched metal-dielectric metamaterials and the advantage of imprinting moth-eye surfaces on them. Impedance-matched metamaterials are known to act as strong, polarization-independent, broadband absorbers. However, in the infrared region far from the metal’s plasma frequency, the reflection from metal layers dominates over the absorption. Using anti-reflective moth-eye surfaces we show that it is possible to obtain absorption independent of polarization or incidence angle, over an exceptionally broad frequency range from 400 nm to 6 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Water metamaterial for ultra-broadband and wide-angle absorption

Jianwen Xie, Weiren Zhu, Ivan D. Rukhlenko, Fajun Xiao, Chong He, Junping Geng, Xianling Liang, Ronghong Jin, and Malin Premaratne
Opt. Express 26(4) 5052-5059 (2018)

Triple-broadband infrared metamaterial absorber with polarization-independent and wide-angle absorption

Chang Liu, Limei Qi, and Mingjing Wu
Opt. Mater. Express 8(8) 2439-2448 (2018)

Metamaterial perfect absorber with unabated size-independent absorption

Peng Yu, Lucas V. Besteiro, Jiang Wu, Yongjun Huang, Yueqi Wang, Alexander O. Govorov, and Zhiming Wang
Opt. Express 26(16) 20471-20480 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent 2599944 (1952).
  2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ∊ and μ,” Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  5. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, Richard D. Averitt, and Willie J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [Crossref] [PubMed]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [Crossref] [PubMed]
  7. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 571 (2011).
    [Crossref]
  8. Hao Wang and Liping Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [Crossref]
  9. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
    [Crossref]
  10. A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24, A868–A877 (2016).
    [Crossref] [PubMed]
  11. H. Yu, Z. Zhao, Q. Qian, J. Xu, P. Gou, Y. Zou, J. Cao, L. Yang, J. Qian, and Z. An, “Metamaterial perfect absorbers with solid and inverse periodic cross structures for optoelectronic applications,” Opt. Express 25, 8288–8295 (2017).
    [Crossref] [PubMed]
  12. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  13. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. Uhd Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
    [Crossref] [PubMed]
  14. Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27, 381–391 (2017).
    [Crossref]
  15. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
    [Crossref]
  16. Y. K. Zhong, Y. Lai, M. Tu, B. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24, A832–A845 (2016).
    [Crossref] [PubMed]
  17. N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
    [Crossref] [PubMed]
  18. N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
    [Crossref]
  19. H. A. Macleod, Thin-film optical filters (CRC, Boca Raton, 2010).
  20. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
    [Crossref] [PubMed]
  21. M. C. Larciprete, M. Centini, R. L. Voti, and C. Sibilia, “Selective and tunable thermal emission in metamaterials composed of oriented polar inclusions,” J. Opt. Soc. Am. B 34, 1459–1464 (2017).
    [Crossref]
  22. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
    [Crossref] [PubMed]
  23. D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Royal Soc. B,  273, 661–667 (2006).
    [Crossref]
  24. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
    [Crossref]
  25. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
    [Crossref] [PubMed]
  26. Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
    [Crossref] [PubMed]
  27. R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24, 10172–10187 (2016).
    [Crossref] [PubMed]
  28. G. Tan, J. Lee, Y. Lan, M. Wei, L. Peng, I. Cheng, and S. Wu, “Broadband antireflection film with moth-eye-like structure for flexible display applications,” Optica 4, 678–683 (2017).
    [Crossref]
  29. S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
    [Crossref]
  30. M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22, 12545–12550 (2014).
    [Crossref] [PubMed]
  31. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1995).
    [Crossref]
  32. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [Crossref]
  33. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  34. R. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” PIER B 35, 241–261 (2011).
    [Crossref]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Cambridge, 1998).
  36. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27, 1203–1209 (1988).
    [Crossref] [PubMed]
  37. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1, 1–42 (1952).
    [Crossref]
  38. C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy,” J. Non-Cryst. Solids 223, 158–163 (1998).
    [Crossref]
  39. T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

2017 (4)

2016 (3)

2014 (2)

M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22, 12545–12550 (2014).
[Crossref] [PubMed]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

2013 (4)

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref] [PubMed]

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

Hao Wang and Liping Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

2012 (3)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. Uhd Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref] [PubMed]

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

2011 (2)

R. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” PIER B 35, 241–261 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 571 (2011).
[Crossref]

2010 (4)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
[Crossref]

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

2008 (3)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, Richard D. Averitt, and Willie J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref] [PubMed]

2006 (1)

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Royal Soc. B,  273, 661–667 (2006).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

1998 (1)

C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy,” J. Non-Cryst. Solids 223, 158–163 (1998).
[Crossref]

1997 (1)

1996 (2)

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
[Crossref]

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

1995 (1)

1988 (1)

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ∊ and μ,” Phys. Usp. 10, 509–514 (1968).
[Crossref]

1962 (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

1952 (1)

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1, 1–42 (1952).
[Crossref]

Aggarwal, I. D.

Ajayan, P. M.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref] [PubMed]

Akozbek, N.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
[Crossref]

Alexander, R. W.

An, Z.

Arenas, D. J.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Arikawa, K.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Royal Soc. B,  273, 661–667 (2006).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 571 (2011).
[Crossref]

Averitt, R. D.

Averitt, Richard D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 571 (2011).
[Crossref]

Bagal, A.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref] [PubMed]

Barbastathis, G.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

Bell, R. J.

Bernhard, C. G.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

Bingham, C. M.

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 571 (2011).
[Crossref]

Bright, T. J.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Bur, J. A.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref] [PubMed]

Busse, L. E.

Cao, J.

Centini, M.

Chang, C.-H.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref] [PubMed]

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

Chattopadhyay, S.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

Chen, B.

Chen, K. H.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

Chen, L. C.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

Cheng, I.

Choi, H. J.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

Chou, S.Y.

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Ci, L.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref] [PubMed]

Cohen, R. E.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Fan, K.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 571 (2011).
[Crossref]

Foletti, S.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Royal Soc. B,  273, 661–667 (2006).
[Crossref]

Fu, S. M.

Ganguly, A.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

Gaylord, T. K.

Ghanekar, A.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Gou, P.

Guo, W.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref] [PubMed]

Haberko, J.

Hao, T.

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27, 381–391 (2017).
[Crossref]

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Huang, Y. F.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

Iwaszczuk, K.

Jen, Y. J.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Koukis, D. I.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Kowalczyk, M.

Krauss, P. R.

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Lai, Y.

Lan, Y.

Landy, N. I.

Larciprete, M. C.

Lee, J.

Li, L.

Li, Y. C.

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27, 381–391 (2017).
[Crossref]

Liang, C.

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27, 381–391 (2017).
[Crossref]

Lin, A.

Lin, L.

Lin, S.-Y.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-film optical filters (CRC, Boca Raton, 2010).

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
[Crossref]

McKinley, G. H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

Menyuk, C. R.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Miller, W. H.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Moharam, M. G.

Muratore, C.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Newquist, L. A.

Ordal, M. A.

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Padilla, Willie J.

Palasantzas, G.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Royal Soc. B,  273, 661–667 (2006).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Cambridge, 1998).

Park, K.-C.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

Peng, L.

Qian, J.

Qian, Q.

Querry, M. R.

Renstrom, P. J.

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Rumpf, R.

R. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” PIER B 35, 241–261 (2011).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Salisbury, W. W.

W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent 2599944 (1952).

Sanghera, J. S.

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Scalora, M.

N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shaw, L. B.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27, 381–391 (2017).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Sibilia, C.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Sondheimer, E. H.

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1, 1–42 (1952).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Stavenga, D.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Royal Soc. B,  273, 661–667 (2006).
[Crossref]

Strikwerda, A. C.

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Tan, C. Z.

C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy,” J. Non-Cryst. Solids 223, 158–163 (1998).
[Crossref]

Tan, G.

Tanner, D. B.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Tao, H.

Tu, M.

Uhd Jepsen, P.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ∊ and μ,” Phys. Usp. 10, 509–514 (1968).
[Crossref]

Voevodin, A. A.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Voti, R. L.

Wang, Hao

Wang, Liping

Wasylczyk, P.

Watjen, J. I.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Wei, M.

Weiblen, R. J.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Wu, S.

Xu, J.

Yang, L.

Yang, Q.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref] [PubMed]

Yang, Z.-P.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref] [PubMed]

Yu, H.

Yu, P.

Zhang, X.

Zhang, X. A.

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

Zhao, Z.

Zheng, Y.

Zhong, Y. K.

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Zou, Y.

ACS Nano (1)

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012).
[Crossref] [PubMed]

Acta Physiol. Scand. (1)

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. 56, 385–386 (1962).
[Crossref] [PubMed]

Adv. Phys. (1)

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1, 1–42 (1952).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Appl. Phys. Lett. 114, 083515 (2013).

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

J. Non-Cryst. Solids (1)

C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy,” J. Non-Cryst. Solids 223, 158–163 (1998).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

S.Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[Crossref]

Mater. Sci. Eng. R (1)

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. R 69, 1–35 (2010).
[Crossref]

Nano Lett. (2)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24, 235202 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 571 (2011).
[Crossref]

Opt. Commun. (1)

N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, and M. J. Bloemer, “Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics,” Opt. Commun. 283, 1613–1620 (2010).
[Crossref]

Opt. Express (8)

M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22, 12545–12550 (2014).
[Crossref] [PubMed]

Hao Wang and Liping Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24, A868–A877 (2016).
[Crossref] [PubMed]

Y. K. Zhong, Y. Lai, M. Tu, B. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24, A832–A845 (2016).
[Crossref] [PubMed]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. Uhd Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref] [PubMed]

R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24, 10172–10187 (2016).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, Richard D. Averitt, and Willie J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref] [PubMed]

H. Yu, Z. Zhao, Q. Qian, J. Xu, P. Gou, Y. Zou, J. Cao, L. Yang, J. Qian, and Z. An, “Metamaterial perfect absorbers with solid and inverse periodic cross structures for optoelectronic applications,” Opt. Express 25, 8288–8295 (2017).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ∊ and μ,” Phys. Usp. 10, 509–514 (1968).
[Crossref]

PIER B (1)

R. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” PIER B 35, 241–261 (2011).
[Crossref]

Proc. Royal Soc. B (1)

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Royal Soc. B,  273, 661–667 (2006).
[Crossref]

Sci. Rep. (1)

N. Mattiucci, M. J. Bloemer, N. Akozbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Wave Random Complex (1)

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27, 381–391 (2017).
[Crossref]

Other (3)

W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent 2599944 (1952).

H. A. Macleod, Thin-film optical filters (CRC, Boca Raton, 2010).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Cambridge, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustrations of the metamaterial and incidence geometry. (a) Lateral view of impedance matched metal-dielectric metamaterials with a flat surface (left) and a moth-eye surface (right). The elementary cell has a period Λ and consists of a metal layer of thickness dM sandwiched between dielectric layers of thickness dD. For the truncated conical pillars that form the moth-eye surface (right), r1 and r2 are the radius at the top and bottom respectively and h is the height of the pillars. The incidence geometry for TE-polarized incidence is also shown. (b) Top and 3D views of the moth-eye structures that are obtained by arranging the truncated conical pillars in a triangular lattice with periods Dx and D y = 3 D x in the x- and y-directions respectively. The polarization angle ϕ is shown here for normal incidence.
Fig. 2
Fig. 2 The absorptance spectrum for the Cu-based metamaterial that we consider with (a) TE-polarized incidence (ϕ = 90°) and (b) TM-polarized incidence (ϕ = 0°). The elementary cell in this metamaterial has metal layers with thickness dM = 10 nm and SiO2 layers with thickness dD = 30 nm. The moth-eye surface has a height h = 280 nm, periods Dx = 300 nm and Dy = 520 nm, and radii r1 = 50 nm and r2 = 145 nm.
Fig. 3
Fig. 3 The absorptance spectrum for the W-based metamaterial that we consider with (a) TE-polarized incidence (ϕ = 90°) and (b) TM-polarized incidence (ϕ = 0°). Structure parameters are: dM = 5 nm, dD = 75 nm, h = 620 nm, Dx = 834 nm, Dy = 1444 nm, r1 = 236 nm, and r2 = 383 nm.
Fig. 4
Fig. 4 Polarization dependence of the absorptance spectrum for the (a) and (b) Cu-based metamaterial, and for the (c) and (d) W-based metamaterial.
Fig. 5
Fig. 5 The absorptance spectrum for the non-impedance-matched all-metal films and moth-eye structures. (a) Moth-eye surfaces made entirely of Cu with TM-polarized incidence. (b) Moth-eye surfaces made entirely from W with TE-polarized incidence. (c) 700-nm thick Cu-film with TM polarized incidence. (d) 1550-nm thick W-film with TE-polarized incidence. The dimensions for the moth-eye surfaces are outlined in Fig. 2(a) for (a) and Fig. 3(a) for (b) with a transmission region that consists of the same metal. Transmission region for (c) and (d) is air.
Fig. 6
Fig. 6 Electric field intensity and ohmic loss distribution for Cu-based metamaterials. (a) λ = 0.5 μm. Absorptance > 99%. (b) λ = 0.5 μm. Absorptance ≈ 95%. (c) λ = 1.2 μm. Absorptance ≈ 99%. (d) λ = 1.2 μm. Absorptance ≈ 20%.
Fig. 7
Fig. 7 Electric field intensity and ohmic loss distribution for W-based metamaterials. (a) λ = 2.5 μm. Absorptance ≈ 90%. (b) λ = 2.5 μm. Absorptance ≈ 90%. (c) λ = 5 μm. Absorptance > 99%. (d) λ = 5 μm. Absorptance ≈ 15%.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E inc ( r ) = exp ( j k inc r ) u ^ r | z < 0 ,
E R ( r ) = m , n R m n exp ( j k 1 , m n r ) ,
E T ( r ) = m , n T m n exp ( j k 3 , m n r ) ,
k x m n = k x 0 + 2 π m / D x ,
k y m n = k y 0 + 2 π n / D y ,
H = V ρ E ,
z E x = k 0 H y + x [ ( k 0 ) 1 ( x H y y H x ) ] , z E y = k 0 H x + y [ ( k 0 ) 1 ( x H y y H x ) ] , z H x = k 0 E y + x [ ( k 0 ) 1 ( x E y y E x ) ] , z H y = k 0 E x + y [ ( k 0 ) 1 ( x E y y E x ) ] ,
z E = k 0 FH ,
z H = k 0 GE .
z 2 E = k 0 2 FGE ,
z 2 ( W 1 E ) = ( k 0 Γ ) 2 ( W 1 E ) ,
E ( z ) = W [ Φ ( z ) c + X Φ ( z ) c ] ,
[ E ( z ) H ( z ) ] = [ W W V V ] [ Φ ( z ) 0 0 X Φ ( z ) ] [ c + c ] .
[ T R ] = S [ δ 0 ] .
[ W X W V X V ] [ c + c ] = [ W + 1 W + 1 X + 1 V + 1 V + 1 X + 1 ] [ c + 1 + c + 1 ] .
s = [ W + 1 W V + 1 V ] 1 [ W X W + 1 X + 1 V X V + 1 X + 1 ] .
S = s 1 s 2 s N z 1 .

Metrics