Abstract

An ultracompact broadband dual-mode 3 dB power splitter using inverse design method for highly integrated on-chip mode (de) multiplexing system is proposed and experimentally demonstrated. A dual-mode convertor based on subwavelength axisymmetric three-branch waveguide is utilized to convert TE0 and TE1 to three intermediate fundamental modes. The axisymmetric topology constraint of the nanostructures enables the optimized device to achieve a strict 50:50 splitting ratio over a broad wavelength range from 1.52 to 1.60 µm. The fabricated device occupied a compact footprint of only 2.88 µm × 2.88 µm. The measured average excess losses and crosstalks for both modes were respectively less than 1.5 dB and −20 dB from 1.52 to 1.58 µm for both TE0 and TE1, which are consistent with the numerical simulations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers

Weijie Chang, Luluzi Lu, Xinshu Ren, Dongyu Li, Zepeng Pan, Mengfan Cheng, Deming Liu, and Minming Zhang
Photon. Res. 6(7) 660-665 (2018)

Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction

Weijie Chang, Luluzi Lu, Xinshu Ren, Dongyu Li, Zepeng Pan, Mengfan Cheng, Deming Liu, and Minming Zhang
Opt. Express 26(7) 8162-8170 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283 (2014).
    [Crossref]
  2. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
    [Crossref]
  3. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
    [Crossref] [PubMed]
  4. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  5. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
    [Crossref] [PubMed]
  6. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  7. Y. Zhang, Y. He, Q. Zhu, C. Qiu, and Y. Su, “On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk,” Photon. Res. 5(5), 521–526 (2017).
    [Crossref]
  8. L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, and L. Zhang, “General architectures for on-chip optical space and mode switching,” Optica 5(2), 180–187 (2018).
    [Crossref]
  9. H. Xu and Y. Shi, “Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers,” Opt. Lett. 41(22), 5381–5384 (2016).
    [Crossref] [PubMed]
  10. W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, and M. Zhang, “Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers,” Photon. Res. 6(7), 660–665 (2018).
    [Crossref]
  11. H. Xu and Y. Shi, “Ultra-Sharp Multi-Mode Waveguide Bending Assisted with Metamaterial-Based Mode Converters,” Laser Photonics Rev. 12(3), 1700240 (2018).
    [Crossref]
  12. C. Sun, Y. Yu, G. Chen, and X. Zhang, “Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk,” Opt. Lett. 42(15), 3004–3007 (2017).
    [Crossref] [PubMed]
  13. W. Chang, L. Lu, D. Liu, and M. Zhang, “Ultra-compact silicon multi-mode waveguide bend based on subwavelength asymmetric Y-junction,” Optical Fiber Communication Conference. Optical Society of America, (2018).
    [Crossref]
  14. Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
    [Crossref] [PubMed]
  15. H. Xu and Y. Shi, “Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters,” Opt. Lett. 41(21), 5047–5050 (2016).
    [Crossref] [PubMed]
  16. L. Han, B. P. P. Kuo, N. Alic, and S. Radic, “Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch,” Opt. Express 26(11), 14800–14809 (2018).
    [Crossref] [PubMed]
  17. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  18. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  19. Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42(16), 3093–3096 (2017).
    [Crossref] [PubMed]
  20. K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. Lett. 42(4), 855–858 (2017).
    [Crossref] [PubMed]
  21. M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America), paper Th2A.8 (2018).
    [Crossref]
  22. L. Lu, D. Liu, F. Zhou, D. Li, M. Cheng, L. Deng, S. Fu, J. Xia, and M. Zhang, “Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures,” Opt. Lett. 41(21), 5051–5054 (2016).
    [Crossref] [PubMed]
  23. A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7(1), 1786 (2017).
    [Crossref] [PubMed]
  24. Y. Wang, S. Gao, K. Wang, and E. Skafidas, “Ultra-broadband and low-loss 3 dB optical power splitter based on adiabatic tapered silicon waveguides,” Opt. Lett. 41(9), 2053–2056 (2016).
    [Crossref] [PubMed]
  25. Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett. 38(18), 3608–3611 (2013).
    [Crossref] [PubMed]
  26. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  27. Lumerical FDTD solutions, https://www.lumerical.com .
  28. W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, and M. Zhang, “Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction,” Opt. Express 26(7), 8162–8170 (2018).
    [Crossref] [PubMed]

2018 (5)

2017 (5)

2016 (5)

2015 (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

2014 (4)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283 (2014).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

Alic, N.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Bowers, J. E.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283 (2014).
[Crossref]

Chang, W.

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Chen, G.

Chen, P.

Chen, R. T.

Chen, S.

Cheng, M.

Cui, H.

Da Ros, F.

Dadap, J. I.

Dai, D.

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283 (2014).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

Deng, L.

Ding, J.

Ding, Y.

Driscoll, J. B.

Fu, S.

Fu, X.

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Gao, S.

Grote, R. R.

Han, L.

He, S.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

He, Y.

Hosseini, A.

Huang, B.

Ishizaka, Y.

Jia, H.

Kawaguchi, Y.

Koshiba, M.

Kuo, B. P. P.

Kwong, D.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Li, D.

Lipson, M.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Liu, D.

Liu, L.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Lu, L.

Lu, M.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Osgood, R. M.

Ou, H.

Pan, Z.

Petykiewicz, J.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7(1), 1786 (2017).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Peucheret, C.

Piggott, A. Y.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7(1), 1786 (2017).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Qiu, C.

Radic, S.

Ren, X.

Saitoh, K.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shi, Y.

Skafidas, E.

Song, Q.

Souhan, B.

Su, L.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7(1), 1786 (2017).
[Crossref] [PubMed]

Su, Y.

Sun, C.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk,” Opt. Lett. 42(15), 3004–3007 (2017).
[Crossref] [PubMed]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Sun, S.

Sun, W.

Sun, X.

Uematsu, T.

Vuckovic, J.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7(1), 1786 (2017).
[Crossref] [PubMed]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Wang, J.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

Wang, K.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, Y.

Wen, X.

Xia, J.

Xiao, S.

Xu, H.

Xu, J.

Xu, K.

Xu, X.

Yang, L.

Yang, S.

Ye, M.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Yi, N.

Yu, Y.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk,” Opt. Lett. 42(15), 3004–3007 (2017).
[Crossref] [PubMed]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Yu, Z.

Zhang, L.

Zhang, M.

Zhang, N.

Zhang, X.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk,” Opt. Lett. 42(15), 3004–3007 (2017).
[Crossref] [PubMed]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zhou, F.

Zhou, T.

Zhu, Q.

J. Lightwave Technol. (1)

Laser Photonics Rev. (2)

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

H. Xu and Y. Shi, “Ultra-Sharp Multi-Mode Waveguide Bending Assisted with Metamaterial-Based Mode Converters,” Laser Photonics Rev. 12(3), 1700240 (2018).
[Crossref]

Nanophotonics (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophotonics 3(4-5), 283 (2014).
[Crossref]

Nat. Commun. (1)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

L. Lu, D. Liu, F. Zhou, D. Li, M. Cheng, L. Deng, S. Fu, J. Xia, and M. Zhang, “Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures,” Opt. Lett. 41(21), 5051–5054 (2016).
[Crossref] [PubMed]

Y. Wang, S. Gao, K. Wang, and E. Skafidas, “Ultra-broadband and low-loss 3 dB optical power splitter based on adiabatic tapered silicon waveguides,” Opt. Lett. 41(9), 2053–2056 (2016).
[Crossref] [PubMed]

Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett. 38(18), 3608–3611 (2013).
[Crossref] [PubMed]

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers,” Opt. Lett. 41(22), 5381–5384 (2016).
[Crossref] [PubMed]

Z. Yu, H. Cui, and X. Sun, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42(16), 3093–3096 (2017).
[Crossref] [PubMed]

K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, and Q. Song, “Integrated photonic power divider with arbitrary power ratios,” Opt. Lett. 42(4), 855–858 (2017).
[Crossref] [PubMed]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk,” Opt. Lett. 42(15), 3004–3007 (2017).
[Crossref] [PubMed]

H. Xu and Y. Shi, “Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters,” Opt. Lett. 41(21), 5047–5050 (2016).
[Crossref] [PubMed]

Optica (1)

Photon. Res. (2)

Sci. Rep. (2)

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6(1), 23516 (2016).
[Crossref] [PubMed]

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7(1), 1786 (2017).
[Crossref] [PubMed]

Other (3)

Lumerical FDTD solutions, https://www.lumerical.com .

W. Chang, L. Lu, D. Liu, and M. Zhang, “Ultra-compact silicon multi-mode waveguide bend based on subwavelength asymmetric Y-junction,” Optical Fiber Communication Conference. Optical Society of America, (2018).
[Crossref]

M. Teng, K. Kojima, T. Koike-Akino, B. Wang, C. Lin, and K. Parsons, “Broadband SOI mode order converter based on topology optimization,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America), paper Th2A.8 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Dual-mode 3 dB power splitter assisted with DMCs based on conventional waveguides. (b) The proposed dual-mode power splitter assisted with DMCs, based on subwavelength structure.
Fig. 2
Fig. 2 (a) The schematic of DMC based on conventional waveguide. (b) For Wgap = 200 nm, W1 = 450 nm, mode effective index with different W0 (c) For Wgap = 200 nm, W0 = 550 nm, mode effective index as a function of W1 (d) For W0 = 550 nm, W1 = 450 nm, mode effective index with different Wgap (f) Transmission spectra as a function of L.
Fig. 3
Fig. 3 (a) and (b) Simulated optical field evolutions of Hz for TE0 and TE1, respectively. (c) and (d) Simulated transmission spectra for the MUX and the MDM system, respectively.
Fig. 4
Fig. 4 (a)−(d), (e)−(h) and (i)−(l) The initial and optimized pattern pictures and the corresponding simulated optical field evolutions of Hz for TE0 and TE1 for different random initial patterns, respectively. (m) The calculated FOMs after every iteration for different random initial patterns. (n) and (o) The corresponding simulated ELs for TE0 and TE1 for different random initial patterns, respectively.
Fig. 5
Fig. 5 (a)−(d), (e)−(h) and (i)−(l) The initial and optimized pattern pictures and the corresponding simulated optical field evolutions of Hz for TE0 and TE1 for the different footprints of 2.88 × 2.16 μm2, 2.88 × 2.88 μm2 and 2.88 × 3.6 μm2, respectively. (m) The calculated FOMs after every iteration for the different footprints. (n) and (o) The corresponding simulated ELs for TE0 and TE1 for the different footprints, respectively.
Fig. 6
Fig. 6 (a) SEM image for the entire fabricated device composed of a dual-mode 3 dB power splitter and three (DE) MUXs. (b) and (c) The detailed SEM images for dual-mode 3 dB power splitter and DEMUX. (d) SEM picture for the reference MDM system. (e) The normalized measured transmission spectra for the fabricated reference MDM system. (f) and (g) The measured ELs for both modes for the fabricated 3 dB power splitter, respectively. Shaded areas indicate minimum and maximum measured values across the fabricated devices, and solid lines indicate the average values. (h) The measured XTs for both modes for the fabricated 3 dB power splitter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM=1( 1α ) 1 2M ( | t 1 0.5 |+| t 2 0.5 | )α 1 2M ( x 1 + x 2 ),

Metrics