Abstract

Vector beams (VBs) that possess nonuniform polarization distributions in space have various applications. In view of the utilization of the circularly polarized light in generating VBs based on the metallic structures, this paper proposes an approach to generate VBs using metallic nanoslits with linearly polarized light illumination. These nanoslits are located on two concentric circular orbits, and the nanoslits on the inner circle are perpendicular to the ones in the outer circle. The linearly polarized light is effectively changed into the rotational symmetric VBs by rotating these orthogonal nanoslits, and the polarization order of the VBs can be adjusted by changing the rotation angles of nanoslits. The detailed theoretical analysis provides the basis for the conversion from the linearly polarized light to the VBs. Numerical simulations and experimental measurement demonstrate the performance of VB generators. This paper’s proposed method has advantages that include ultrathin and compact structure, convenient operation and immediate conversion from linear polarization to VBs, and easier expansion of VB applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vector beam generation based on the nanometer-scale rectangular holes

Qi Zhang, Peiyu Li, Yanying Li, Han Wang, Lixia Liu, Yuan He, and Shuyun Teng
Opt. Express 25(26) 33480-33486 (2017)

Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation

Seong-Won Moon, Hee-Dong Jeong, Siwoo Lee, Byoungho Lee, Yong-Sang Ryu, and Seung-Yeol Lee
Opt. Express 27(14) 19119-19129 (2019)

Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film

Yuqin Zhang, Ruirui Zhang, Xing Li, Li Ma, Chunxiang Liu, Changwei He, and Chuanfu Cheng
Opt. Express 25(25) 32150-32160 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  3. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [Crossref] [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  5. X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010).
    [Crossref] [PubMed]
  6. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
    [Crossref]
  7. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
    [Crossref] [PubMed]
  8. R. Chen, K. Agarwal, C. J. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38(16), 3111–3114 (2013).
    [Crossref] [PubMed]
  9. K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, and Y. P. Li, “Vector-vortex Bessel-Gauss beams and their tightly focusing properties,” Opt. Lett. 36(6), 888–890 (2011).
    [Crossref] [PubMed]
  10. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
    [Crossref] [PubMed]
  11. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
    [Crossref] [PubMed]
  12. V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
    [Crossref] [PubMed]
  13. Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
    [Crossref] [PubMed]
  14. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
    [Crossref] [PubMed]
  15. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51(10), C1–C6 (2012).
    [Crossref] [PubMed]
  16. Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
    [Crossref] [PubMed]
  17. N. K. Viswanathan and V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
    [Crossref] [PubMed]
  18. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [Crossref] [PubMed]
  19. H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
    [Crossref] [PubMed]
  20. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
    [Crossref]
  21. Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic botch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3(2-3), 103–108 (2008).
    [Crossref]
  22. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [Crossref] [PubMed]
  23. P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
    [Crossref]
  24. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
    [Crossref] [PubMed]
  25. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  26. F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
    [Crossref]
  27. Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
    [Crossref]
  28. B. Zhu, G. Ren, M. J. Cryan, C. Wan, Y. Gao, Y. Yang, and S. Jian, “Tunable graphene-coated spiral dielectric lens as a circular polarization analyzer,” Opt. Express 23(7), 8348–8356 (2015).
    [Crossref] [PubMed]
  29. Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
    [Crossref]
  30. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
    [Crossref] [PubMed]
  31. H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).
  32. Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
    [Crossref]
  33. P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40(14), 3229–3232 (2015).
    [Crossref] [PubMed]
  34. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
    [Crossref]
  35. Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25(25), 32150–32160 (2017).
    [Crossref] [PubMed]
  36. Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25(26), 33480–33486 (2017).
    [Crossref]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

2018 (3)

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

2017 (2)

2016 (1)

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

2015 (6)

2014 (2)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
[Crossref]

2013 (4)

2012 (3)

2011 (2)

2010 (3)

2009 (3)

2008 (2)

Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic botch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3(2-3), 103–108 (2008).
[Crossref]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

2006 (1)

2003 (2)

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

Afshinmanesh, F.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Agarwal, K.

Alfano, R. R.

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Arnold, C.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref] [PubMed]

Banzer, P.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Basov, D. N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Bauer, T.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Biss, D. P.

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Brongersma, M. L.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Brown, T.

Brown, T. G.

Cai, W.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Cao, G. W.

Cardano, F.

Chen, H.

Chen, R.

Chen, S.

Chen, X.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

R. Chen, K. Agarwal, C. J. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38(16), 3111–3114 (2013).
[Crossref] [PubMed]

Cheng, C.

Cheng, H.

Cho, S. W.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Cryan, M. J.

D’Ambrosio, V.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref] [PubMed]

de Lisio, C.

Ding, J.

Dong, J.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Gao, Y.

Gerardot, B. D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Hao, J.

Hao, X.

Haus, J. W.

Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic botch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3(2-3), 103–108 (2008).
[Crossref]

He, C.

He, Y.

Hossain, Z.

Huang, K.

Inavalli, V. V. G. K.

Jian, S.

Kang, M.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Karimi, E.

Kim, H.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Kozawa, Y.

Kristensen, P.

Kuang, C.

Laurat, J.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref] [PubMed]

Leach, J.

Lee, B.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Lee, S. Y.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Leger, J.

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Leuchs, G.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, J.

Li, K.

Li, P. Y.

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25(26), 33480–33486 (2017).
[Crossref]

Li, X.

Li, Y. P.

Li, Y. Y.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
[Crossref]

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25(26), 33480–33486 (2017).
[Crossref]

Li, Z.

Lin, L.

Liu, C.

Liu, L. X.

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25(26), 33480–33486 (2017).
[Crossref]

Liu, M.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).

Liu, W.

Liu, X.

Liu, Z.

Liu, Z. Y.

Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
[Crossref]

Ma, L.

Marrucci, L.

Milione, G.

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Nelson, R. L.

Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic botch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3(2-3), 103–108 (2008).
[Crossref]

Nguyen, T. A.

Nolan, D.

Nolan, D. A.

Orlov, S.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Padilla, W. J.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Parigi, V.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref] [PubMed]

Park, J.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Pratavieira, S.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Ramachandran, S.

Ren, G.

Ren, X. R.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
[Crossref]

Roberts, A.

Rumala, Y. S.

Santamato, E.

Sato, S.

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Sciarrino, F.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref] [PubMed]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Sheppard, C. J.

Shi, P.

Slussarenko, S.

Smith, D. R.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Teng, S. Y.

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
[Crossref]

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25(26), 33480–33486 (2017).
[Crossref]

Tian, J.

Viswanathan, N. K.

Wan, C.

Wang, H.

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25(26), 33480–33486 (2017).
[Crossref]

Wang, H. T.

Wang, J.

Wang, Q. J.

Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
[Crossref]

Wang, T.

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Wen, D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

White, J. S.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Wu, Z.

Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic botch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3(2-3), 103–108 (2008).
[Crossref]

Xie, B.

Xie, Y. B.

Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
[Crossref]

Xin, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Xu, J.

Yan, M. F.

Yang, Y.

Youngworth, K.

Youngworth, K. S.

Yu, P.

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yue, F.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic botch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3(2-3), 103–108 (2008).
[Crossref]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[Crossref] [PubMed]

Zhang, B. F.

Zhang, J.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).

Zhang, L. L.

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

Zhang, Q.

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
[Crossref]

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, Y. He, and S. Y. Teng, “Vector beam generation based on the nanometer-scale rectangular holes,” Opt. Express 25(26), 33480–33486 (2017).
[Crossref]

Zhang, R.

Zhang, X.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Zhang, X. B.

Zhang, X. J.

Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, R. Zhang, X. Li, L. Ma, C. Liu, C. He, and C. Cheng, “Radially polarized plasmonic vector vortex generated by a metasurface spiral in gold film,” Opt. Express 25(25), 32150–32160 (2017).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Zhou, H.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).

Zhou, Y.

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).

Zhu, B.

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Zhu, Y. Y.

Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
[Crossref]

ACS Photonics (1)

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. B. Xie, Z. Y. Liu, Q. J. Wang, Y. Y. Zhu, and X. J. Zhang, “Miniature polarization analyzer based on surface plasmon polaritons,” Appl. Phys. Lett. 105(10), 101107 (2014).
[Crossref]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

IEEE Photonics J. (1)

H. Zhou, J. Dong, Y. Zhou, J. Zhang, M. Liu, and X. Zhang, “Designing appointed and multiple focuses with plasmonic vortex lenses,” IEEE Photonics J. 7(4), 1–8 (2015).

J. Nanophotonics (1)

Q. Zhang, P. Y. Li, Y. Y. Li, H. Wang, L. X. Liu, L. L. Zhang, and S. Y. Teng, “Optical vortex generator with linearly polarized light illumination,” J. Nanophotonics 12(1), 016011 (2018).
[Crossref]

Nano Lett. (2)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Nat. Commun. (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (11)

P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, and J. Tian, “Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces,” Opt. Lett. 40(14), 3229–3232 (2015).
[Crossref] [PubMed]

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
[Crossref] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35(23), 3928–3930 (2010).
[Crossref] [PubMed]

R. Chen, K. Agarwal, C. J. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38(16), 3111–3114 (2013).
[Crossref] [PubMed]

K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, and Y. P. Li, “Vector-vortex Bessel-Gauss beams and their tightly focusing properties,” Opt. Lett. 36(6), 888–890 (2011).
[Crossref] [PubMed]

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
[Crossref] [PubMed]

N. K. Viswanathan and V. V. G. K. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, and H. T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Plasmonics (3)

P. Y. Li, Q. Zhang, Y. Y. Li, H. Wang, L. X. Liu, and S. Y. Teng, “Plasmonic lens based on rectangular holes,” Plasmonics 13(1), 1–5 (2018), doi:.
[Crossref]

Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic botch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3(2-3), 103–108 (2008).
[Crossref]

Q. Zhang, P. Y. Li, Y. Y. Li, X. R. Ren, and S. Y. Teng, “A universal plasmonic polarization state analyzer,” Plasmonics 13(4), 1129–1134 (2018).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure diagram of VB generator and its magnified part. Where r1 and r2 are the radii of the inner and outer circular orbits, θ is the position angle of nanoslit, α is the rotation angle between the horizontal direction and the short edge of nanoslit, and l1 and l2 are the lengths of the short and long edges of nanoslit.
Fig. 2
Fig. 2 (a) Transmission model of one nanoslit with 45° linearly polarized light illumination and the simulated transmission fields of (b) x component and (c) y component.
Fig. 3
Fig. 3 Schematic diagram for the optical field at the observation point P emitting from one nanoslit on the inner circular orbit
Fig. 4
Fig. 4 Structure of the VB generator with n = 1 (a) and its transmission distributions (b)-(g). Where the results of (b)-(d) corresponds to the linearly polarized light illumination with the polarization direction along the x axis, and the results of (e)-(g) are for the linearly polarized light with the polarization direction along the y axis.
Fig. 5
Fig. 5 Structure of the VB generator with n = 2(a) and its transmission distributions (b)-(g). Where the results of (b)-(d) corresponds to the linearly polarized light illumination with the polarization direction along the x axis, and the results of (e)-(g) are for the linearly polarized light with the polarization direction along the y axis.
Fig. 6
Fig. 6 (a) Experimental setup, the scanning electron microscopy (SEM) image of the MS with (b) n = 1 and (i) n = 2, and the measured intensity distributions of (c)-(h) the first-order and (j)-(o) the second-order VBs with different linearly polarized light illumination. Where (c)-(e) and (i)-(l) are the results under x polarization illumination, (f)-(h) and (m)-(o) are the results under y polarization illumination. The inserted arrows in the patterns on the right columns denote the direction of analyzer P.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α= nθ 2 +Δφ,
T p =( cos 2 α 1 2 sin2α 1 2 sin2α sin 2 α ),
T 1 = 1 2 ( 1cosnθ sinnθ sinnθ 1+cosnθ )
T 2 = 1 2 ( 1+cosnθ sinnθ sinnθ 1cosnθ ).
E t = 0 2π { T 1 E i e i k spp ( ρ r 1 ) + T 2 E i e i k spp [ ρ( r 1 +d ) ] } dθ,
E i =( cosγ sinγ ),
E t = e i k spp r 0 0 2π e i k spp ρcos( βθ ) ( cos(nθγ) sin(nθγ) ) dθ.
E t = 2π e i k spp r 0 ( i ) n J n ( k spp ρ )( cos(nβγ) sin(nβγ) ).
E t1 J n ( k spp ρ )( cosnβ sinnβ ).
E t2 J n ( k spp ρ )( sinnβ cosnβ ).

Metrics