Abstract

Gold-coated fiber Bragg gratings (FBGs) are nowadays a mature technology for lab-on-fiber sensing based on surface plasmon resonance (SPR) excitation. Tilted FBGs bring valuable assets such as easy light injection, remote operation in very small volumes of analytes and immunity to temperature fluctuations. Different gold configurations have been reported to date, without considering their relative performances in terms of biochemical sensing. In this work, we experimentally study the impact of the gold coating on the cladding mode distribution in the tilted FBG amplitude spectrum and subsequently on its sensitivity to cytokeratins used as biomarkers for cancer diagnosis. Some relevant configurations of gold coatings are produced and tested, relying on both the sputtering and electroless plating (ELP) processes. The obtained results confirm that the coating thickness and its roughness drive the biosensing performances. The experimental limit of detection for cytokeratins 17 sensing reaches 14 fM for the most sensitive configurations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity

Christophe Caucheteur, Valérie Voisin, and Jacques Albert
Opt. Express 23(3) 2918-2932 (2015)

Polarized spectral combs probe optical fiber surface plasmons

Christophe Caucheteur, Valérie Voisin, and Jacques Albert
Opt. Express 21(3) 3055-3066 (2013)

High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement

Christophe Caucheteur, Yanina Shevchenko, Li-Yang Shao, Marc Wuilpart, and Jacques Albert
Opt. Express 19(2) 1656-1664 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).
  2. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [Crossref]
  3. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1–3), 401–405 (1995).
    [Crossref]
  4. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1996).
    [Crossref]
  5. M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005).
    [Crossref] [PubMed]
  6. R. Verma, A. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
    [Crossref]
  7. Y. L. Lo, C. H. Chuang, and Z. W. Lin, “Ultrahigh sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology,” Opt. Lett. 36(13), 2489–2491 (2011).
    [Crossref] [PubMed]
  8. J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
    [Crossref] [PubMed]
  9. M. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “Surface plasmon resonance in the visible region in sensors based on tapered optical fibers,” Sens. Actuators B Chem. 190, 881–885 (2014).
    [Crossref]
  10. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  11. F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(4), 23 (2017).
    [Crossref] [PubMed]
  12. T. Schuster, R. Herschel, N. Neumann, and C. G. Schäffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol. 30(8), 1003–1008 (2012).
    [Crossref]
  13. B. R. Heidemann, I. Chiamenti, M. M. Oliveira, M. Muller, and J. L. Fabris, “Plasmonic optical fiber sensors: enhanced sensitivity in water-based environments,” Appl. Opt. 54(27), 8192–8197 (2015).
    [Crossref] [PubMed]
  14. J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 1–26 (2012).
  15. C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
    [Crossref]
  16. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [Crossref] [PubMed]
  17. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [Crossref] [PubMed]
  18. C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
    [Crossref] [PubMed]
  19. C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
    [Crossref] [PubMed]
  20. Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
    [Crossref] [PubMed]
  21. V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
    [Crossref] [PubMed]
  22. T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
    [Crossref] [PubMed]
  23. C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
    [Crossref]
  24. C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
    [Crossref] [PubMed]
  25. Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
    [Crossref] [PubMed]
  26. T. Guo, Á. González-Vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber-grating immunosensing: a review,” Sensors (Basel) 17(12), 2732 (2017).
    [Crossref] [PubMed]
  27. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22(26), 31665–31676 (2014).
    [Crossref] [PubMed]
  28. D. Feng, W. Zhou, X. Qiao, and J. Albert, “High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings,” Opt. Express 24(15), 16456–16464 (2016).
    [Crossref] [PubMed]
  29. Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
    [Crossref] [PubMed]
  30. J. Albert, F. Liu, and V. Marquez-Cruz, “Hypersensitivity and applications of cladding modes of optical fibers coated with nanoscale metal layers,” Sensors (Basel) 18(5), 1518 (2018).
    [Crossref] [PubMed]
  31. C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
    [Crossref] [PubMed]
  32. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
    [Crossref] [PubMed]
  33. J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sens. Actuators B Chem. 181, 611–619 (2013).
    [Crossref]
  34. F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
    [Crossref] [PubMed]
  35. S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, and Y. Wang, “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Opt. Express 26(4), 3988–3994 (2018).
    [Crossref] [PubMed]

2018 (3)

2017 (5)

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
[Crossref]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

T. Guo, Á. González-Vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber-grating immunosensing: a review,” Sensors (Basel) 17(12), 2732 (2017).
[Crossref] [PubMed]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(4), 23 (2017).
[Crossref] [PubMed]

2016 (3)

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

D. Feng, W. Zhou, X. Qiao, and J. Albert, “High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings,” Opt. Express 24(15), 16456–16464 (2016).
[Crossref] [PubMed]

2015 (4)

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[Crossref] [PubMed]

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

B. R. Heidemann, I. Chiamenti, M. M. Oliveira, M. Muller, and J. L. Fabris, “Plasmonic optical fiber sensors: enhanced sensitivity in water-based environments,” Appl. Opt. 54(27), 8192–8197 (2015).
[Crossref] [PubMed]

2014 (3)

M. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “Surface plasmon resonance in the visible region in sensors based on tapered optical fibers,” Sens. Actuators B Chem. 190, 881–885 (2014).
[Crossref]

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref] [PubMed]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22(26), 31665–31676 (2014).
[Crossref] [PubMed]

2013 (1)

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sens. Actuators B Chem. 181, 611–619 (2013).
[Crossref]

2012 (3)

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

T. Schuster, R. Herschel, N. Neumann, and C. G. Schäffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol. 30(8), 1003–1008 (2012).
[Crossref]

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 1–26 (2012).

2011 (3)

2010 (1)

2009 (1)

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

2008 (1)

R. Verma, A. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

2007 (1)

2005 (2)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005).
[Crossref] [PubMed]

1996 (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1996).
[Crossref]

1995 (1)

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1–3), 401–405 (1995).
[Crossref]

1993 (1)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

Albert, J.

J. Albert, F. Liu, and V. Marquez-Cruz, “Hypersensitivity and applications of cladding modes of optical fibers coated with nanoscale metal layers,” Sensors (Basel) 18(5), 1518 (2018).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
[Crossref]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

D. Feng, W. Zhou, X. Qiao, and J. Albert, “High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings,” Opt. Express 24(15), 16456–16464 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22(26), 31665–31676 (2014).
[Crossref] [PubMed]

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref] [PubMed]

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 1–26 (2012).

C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[Crossref] [PubMed]

Baldini, F.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(4), 23 (2017).
[Crossref] [PubMed]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Barry, S. T.

Brenci, M.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Camci-Unal, G.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref] [PubMed]

Cao, J.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sens. Actuators B Chem. 181, 611–619 (2013).
[Crossref]

Cao, S.

Caucheteur, C.

Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
[Crossref] [PubMed]

T. Guo, Á. González-Vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber-grating immunosensing: a review,” Sensors (Basel) 17(12), 2732 (2017).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
[Crossref]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 1–26 (2012).

C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011).
[Crossref] [PubMed]

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Chan, C. F.

Chang, R. S.

Chen, C.

Chevineau, S.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Chiamenti, I.

Chiavaioli, F.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(4), 23 (2017).
[Crossref] [PubMed]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Chiu, M. H.

Chuang, C. H.

Cuttica, D. F.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref] [PubMed]

Dakka, M. A.

Debliquy, M.

Delport, F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Díaz-Herrera, N.

M. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “Surface plasmon resonance in the visible region in sensors based on tapered optical fibers,” Sens. Actuators B Chem. 190, 881–885 (2014).
[Crossref]

Dokmeci, M. R.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref] [PubMed]

Esteban, Ó.

M. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “Surface plasmon resonance in the visible region in sensors based on tapered optical fibers,” Sens. Actuators B Chem. 190, 881–885 (2014).
[Crossref]

Fabris, J. L.

Feng, D.

Gagnaire, H.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1996).
[Crossref]

Giannetti, A.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

González-Cano, A.

M. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “Surface plasmon resonance in the visible region in sensors based on tapered optical fibers,” Sens. Actuators B Chem. 190, 881–885 (2014).
[Crossref]

González-Vila, Á.

Gouveia, C. A. J.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(4), 23 (2017).
[Crossref] [PubMed]

Grattan, K. T. V.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sens. Actuators B Chem. 181, 611–619 (2013).
[Crossref]

Gu, Y.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Guan, B. O.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Guan, B.-O.

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
[Crossref]

T. Guo, Á. González-Vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber-grating immunosensing: a review,” Sensors (Basel) 17(12), 2732 (2017).
[Crossref] [PubMed]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Gupta, B.

R. Verma, A. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

He, J.

Heidemann, B. R.

Herschel, R.

Homola, J.

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1–3), 401–405 (1995).
[Crossref]

Huang, Y.

S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, and Y. Wang, “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Opt. Express 26(4), 3988–3994 (2018).
[Crossref] [PubMed]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Ioannou, A.

Jafari, A.

Jans, K.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Janssen, K. P. F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Jing, Z.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Jorge, P. A. S.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(4), 23 (2017).
[Crossref] [PubMed]

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Khademhosseini, A.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref] [PubMed]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Lahem, D.

Lambert, P.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Lammertyn, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Laronche, A.

Larrieu, J. C.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Leclère, P.

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

Liang, X.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Liao, C.

Lin, Z. W.

Liu, F.

J. Albert, F. Liu, and V. Marquez-Cruz, “Hypersensitivity and applications of cladding modes of optical fibers coated with nanoscale metal layers,” Sensors (Basel) 18(5), 1518 (2018).
[Crossref] [PubMed]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Liu, Z.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Lo, Y. L.

Loyez, M.

Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
[Crossref] [PubMed]

T. Guo, Á. González-Vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber-grating immunosensing: a review,” Sensors (Basel) 17(12), 2732 (2017).
[Crossref] [PubMed]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Maes, G.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Malachovská, V.

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

Mandia, D. J.

Mao, W.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Marquez-Cruz, V.

J. Albert, F. Liu, and V. Marquez-Cruz, “Hypersensitivity and applications of cladding modes of optical fibers coated with nanoscale metal layers,” Sensors (Basel) 18(5), 1518 (2018).
[Crossref] [PubMed]

Mégret, P.

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

Muller, M.

Navarrete, M.

M. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “Surface plasmon resonance in the visible region in sensors based on tapered optical fibers,” Sens. Actuators B Chem. 190, 881–885 (2014).
[Crossref]

Neumann, N.

Oliveira, M. M.

Peng, W.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Pfeiffer, H.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Pollet, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Qian, S.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Qiao, X.

Qiu, X.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

Remmelink, M.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Ribaut, C.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

Ronot-Trioli, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1996).
[Crossref]

Schäffer, C. G.

Schuster, T.

Shao, L.

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 1–26 (2012).

Shao, L. Y.

Shao, Y.

Sharma, A.

R. Verma, A. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Shevchenko, Y.

Sun, C.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Sun, T.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sens. Actuators B Chem. 181, 611–619 (2013).
[Crossref]

Surin, M.

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

Thomson, D. J.

Trono, C.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Trouillet, A.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1996).
[Crossref]

Tu, M. H.

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sens. Actuators B Chem. 181, 611–619 (2013).
[Crossref]

Veillas, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1996).
[Crossref]

Verma, R.

R. Verma, A. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Voisin, V.

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[Crossref] [PubMed]

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

Wang, F.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Wang, Q.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Wang, S. F.

Wang, Y.

Wattiez, R.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

Wevers, M.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Wu, T.

Wu, Z.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Wuilpart, M.

Xie, C.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Xu, P.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Zhang, F.

Zhang, L.

Zhang, Y.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

Zhou, W.

Anal. Bioanal. Chem. (2)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

V. Malachovská, C. Ribaut, V. Voisin, M. Surin, P. Leclère, R. Wattiez, and C. Caucheteur, “Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors,” Anal. Chem. 87(12), 5957–5965 (2015).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Biosens. Bioelectron. (4)

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref] [PubMed]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[Crossref] [PubMed]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Biosensors (Basel) (1)

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors (Basel) 7(4), 23 (2017).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

C. Caucheteur and P. Mégret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17(12), 2703–2705 (2005).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

J. Albert, L. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 1–26 (2012).

Nat. Commun. (1)

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Verma, A. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Pure Appl. Opt. (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1996).
[Crossref]

Sens. Actuators B Chem. (4)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1–3), 401–405 (1995).
[Crossref]

M. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “Surface plasmon resonance in the visible region in sensors based on tapered optical fibers,” Sens. Actuators B Chem. 190, 881–885 (2014).
[Crossref]

J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sens. Actuators B Chem. 181, 611–619 (2013).
[Crossref]

Sensors (Basel) (3)

J. Albert, F. Liu, and V. Marquez-Cruz, “Hypersensitivity and applications of cladding modes of optical fibers coated with nanoscale metal layers,” Sensors (Basel) 18(5), 1518 (2018).
[Crossref] [PubMed]

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors (Basel) 17(10), 2259 (2017).
[Crossref] [PubMed]

T. Guo, Á. González-Vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber-grating immunosensing: a review,” Sensors (Basel) 17(12), 2732 (2017).
[Crossref] [PubMed]

Z. Naturforsch. B (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Transmitted amplitude spectrum of a 1-cm-long 7° TFBG (inset: sketch of a TFBG).
Fig. 2
Fig. 2 Transmitted spectrum evolution for a bare grating (a), a ~5 nm gold-sputtered grating (c), a ~35 nm gold-sputtered grating (e) and a ~35 nm gold-electroless-plated grating (g). Corresponding SRI sensitivity of the most sensitive mode in their spectrum (b,d,f,h). Error bars represent the uncertainty on the SRI value (10-4 RIU) and on the wavelength (2 pm) and amplitude (0.01 dB) measurements.
Fig. 3
Fig. 3 SEM pictures of ~35 nm gold-sputtered (a) and ~35 nm gold-electroless-plated (b) optical fiber surfaces.
Fig. 4
Fig. 4 Demodulation principle of TFBG biosensors. The displayed cladding mode resonance corresponds to the most sensitive mode of a ~35 nm gold-sputtered TFBG.
Fig. 5
Fig. 5 Relative amplitude variations of the most sensitive mode of the different biofunctionalized TFBG configurations as a function of the CK17 concentration.

Tables (1)

Tables Icon

Table 1 Summary of the main characteristics of the tested gold-coated TFBGs configurations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ Bragg = 2 n eff,core Λ G cosθ .
λ cladding,i =( n eff,core + n eff,cladding,i ) Λ G cosθ .

Metrics