Abstract

This paper reviews recent progress in the field of optically pumped rare-earth-doped channel waveguide lasers, with a focus on operation utilizing distributed-feedback resonators on silicon wafers. Rare-earth-doped amorphous aluminum oxide thin films have been deposited onto silicon wafers by RF reactive co-sputtering from metallic Al and rare-earth targets, the spectroscopy and optical gain of Er3+, Yb3+, Nd3+, and Tm3+ ions has been investigated, and the near-infrared laser transitions near 1 μm in Yb3+, 1.5 μm in Er3+, and 2 μm in Tm3+ and Ho3+ have been demonstrated. Output power between a few μW and hundreds of mW have been achieved in different waveguide geometries, and ultranarrow-linewidth laser operation has been demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers

Eric Lallier
Appl. Opt. 31(25) 5276-5282 (1992)

Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform

Purnawirman, Nanxi Li, Emir Salih Magden, Gurpreet Singh, Neetesh Singh, Anna Baldycheva, Ehsan Shah Hosseini, Jie Sun, Michele Moresco, Thomas N. Adam, Gerard Leake, Douglas Coolbaugh, Jonathan D. B. Bradley, and Michael R. Watts
Opt. Express 25(12) 13705-13713 (2017)

Monolithic erbium- and ytterbium-doped microring lasers on silicon chips

Jonathan D. B. Bradley and Ehsan Shah Hosseini
Opt. Express 22(10) 12226-12237 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010).
  3. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10(2), 65–67 (1985).
    [Crossref] [PubMed]
  4. J. J. Zayhowski, “Microchip lasers,” Linc. Lab. J. 3(3), 427–446 (1990).
  5. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
    [Crossref]
  6. C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18(9), 395–396 (1971).
    [Crossref]
  7. I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18(11), 497–499 (1971).
    [Crossref]
  8. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [Crossref]
  9. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  10. S. R. Chinn and P. L. Kelley, “Analysis of the transmission, reflection and noise properties of distributed feedback laser amplifiers,” Opt. Commun. 10(2), 123–126 (1974).
    [Crossref]
  11. T.-Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
    [Crossref] [PubMed]
  12. M. Eichhorn and M. Pollnau, “Spectroscopic foundations of lasers: Spontaneous emission into a resonator mode,” IEEE J. Sel. Top. Quantum Electron. 21(1), 9000216 (2015).
    [Crossref]
  13. J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
    [Crossref] [PubMed]
  14. T. Kunii and Y. Matsui, “Narrow spectral linewidth semiconductor lasers,” Opt. Quantum Electron. 24(7), 719–735 (1992).
    [Crossref]
  15. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
    [Crossref] [PubMed]
  16. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  17. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  18. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
    [Crossref]
  19. P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
    [Crossref]
  20. D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
    [Crossref]
  21. A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelínek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
    [Crossref] [PubMed]
  22. C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3 Ga5O12 waveguide laser at 1.06 and 0.94 µm,” Opt. Lett. 22(13), 988–990 (1997).
    [Crossref] [PubMed]
  23. A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
    [Crossref]
  24. C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
    [Crossref]
  25. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
    [Crossref]
  26. E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
    [Crossref]
  27. G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
    [Crossref]
  28. J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
    [Crossref]
  29. R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001).
    [Crossref] [PubMed]
  30. J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, and D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27(7), 524–526 (2002).
    [Crossref] [PubMed]
  31. J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27(24), 2161–2163 (2002).
    [Crossref] [PubMed]
  32. C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
    [Crossref]
  33. G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
    [Crossref]
  34. J. J. Mackenzie, C. Li, and D. P. Shepherd, “Multi-Watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
    [Crossref]
  35. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
    [Crossref] [PubMed]
  36. L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, J. S. Wilkinson, and A. A. Anderson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B 21(8), 1452–1462 (2004).
    [Crossref]
  37. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
    [Crossref]
  38. B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
    [Crossref]
  39. M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 17(1), 130–132 (2005).
    [Crossref]
  40. C. Grivas, D. Shepherd, T. May-Smith, R. Eason, and M. Pollnau, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13(1), 210–215 (2005).
    [Crossref] [PubMed]
  41. C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
    [Crossref] [PubMed]
  42. Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
    [Crossref] [PubMed]
  43. R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
    [Crossref]
  44. G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
    [Crossref]
  45. S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO4)2 waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
    [Crossref] [PubMed]
  46. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
    [Crossref] [PubMed]
  47. G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16(16), 12334–12341 (2008).
    [Crossref] [PubMed]
  48. D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16(23), 19221–19231 (2008).
    [Crossref] [PubMed]
  49. H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
    [Crossref]
  50. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
    [Crossref] [PubMed]
  51. F. M. Bain, A. A. Lagatsky, S. V. Kurilchick, V. E. Kisel, S. A. Guretsky, A. M. Luginets, N. A. Kalanda, I. M. Kolesova, N. V. Kuleshov, W. Sibbett, and C. T. A. Brown, “Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser,” Opt. Express 17(3), 1666–1670 (2009).
    [Crossref] [PubMed]
  52. D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
    [Crossref]
  53. A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
    [Crossref] [PubMed]
  54. H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34(18), 2718–2720 (2009).
    [PubMed]
  55. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  56. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
    [Crossref]
  57. J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
    [Crossref]
  58. C. Grivas, J. Yang, M. B. J. Diemeer, A. Driessen, and M. Pollnau, “Continuous-wave Nd-doped polymer lasers,” Opt. Lett. 35(12), 1983–1985 (2010).
    [Crossref] [PubMed]
  59. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
    [Crossref] [PubMed]
  60. D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
    [Crossref] [PubMed]
  61. A. Z. Subramaniam, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photonics Technol. Lett. 22(21), 1571–1573 (2010).
    [Crossref]
  62. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  63. B. Charlet, L. Bastard, and J. E. Broquin, “1 kW peak power passively Q-switched Nd3+-doped glass integrated waveguide laser,” Opt. Lett. 36(11), 1987–1989 (2011).
    [Crossref] [PubMed]
  64. A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
    [Crossref] [PubMed]
  65. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
    [Crossref] [PubMed]
  66. W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
    [Crossref] [PubMed]
  67. F. Starecki, W. Bolaños, A. Braud, J. L. Doualan, G. Brasse, A. Benayad, V. Nazabal, B. Xu, R. Moncorgé, and P. Camy, “Red and orange Pr3+:LiYF4 planar waveguide laser,” Opt. Lett. 38(4), 455–457 (2013).
    [Crossref] [PubMed]
  68. N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38(14), 2431–2433 (2013).
    [Crossref] [PubMed]
  69. W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
    [Crossref] [PubMed]
  70. D. Geskus, E. H. Bernhardi, K. van Dalfsen, S. Aravazhi, and M. Pollnau, “Highly efficient Yb3+-doped channel waveguide laser at 981 nm,” Opt. Express 21(11), 13773–13778 (2013).
    [Crossref] [PubMed]
  71. J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
    [Crossref] [PubMed]
  72. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref] [PubMed]
  73. Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
    [Crossref] [PubMed]
  74. J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
    [Crossref]
  75. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
    [Crossref] [PubMed]
  76. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
    [Crossref] [PubMed]
  77. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  78. R. I. Laming, S. B. Poole, and E. J. Tarbox, “Pump excited-state absorption in erbium-doped fibers,” Opt. Lett. 13(12), 1084–1086 (1988).
    [Crossref] [PubMed]
  79. S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111(3−4), 263–268 (1994).
    [Crossref]
  80. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
    [Crossref] [PubMed]
  81. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
    [Crossref]
  82. M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1−3), 203–211 (1998).
    [Crossref]
  83. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  84. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
    [Crossref]
  85. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
    [Crossref]
  86. L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
    [Crossref]
  87. P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
    [Crossref]
  88. L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
    [Crossref] [PubMed]
  89. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  90. J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
    [Crossref]
  91. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  92. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University, 2015).
  93. P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
    [Crossref]
  94. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
    [Crossref]
  95. M. R. Watts, J. Sun, E. Timurdogan, E. Shah Hosseini, C. Sorace-Agaskar, A. Yaacobi, Z. Su, M. Moresco, J. D. B., Bradley, N.A. Purnawirman G. Leake, T. N. Adam, and D. Coolbaugh, “Very large scale integrated photonics,” in CLEO: Science and Innovations Conference, 2014 OSA Technical Digest Series (Optical Society of America, 2014), paper SM4O.4.
  96. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  97. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  98. Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46(3), 103–110 (2013).
    [Crossref]
  99. M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602512 (2015).
    [Crossref]
  100. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
    [Crossref] [PubMed]
  101. M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
    [Crossref]
  102. G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
    [Crossref]
  103. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
    [Crossref]
  104. G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36(15), 3338–3441 (1997).
    [Crossref] [PubMed]
  105. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
    [Crossref]
  106. S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36(9), 1089–1097 (2000).
    [Crossref]
  107. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
    [Crossref]
  108. J. D. B. Bradley, “Al2O3:Er3+ as a gain platform for integrated optics,” Ph.D. Thesis, University of Twente, The Netherlands (2009).
  109. J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
    [Crossref]
  110. M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
    [Crossref]
  111. F. Ay, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Focused-ion-beam nano-structuring of Al2O3 dielectric layers for photonic applications,” J. Micromech. Microeng. 22(10), 105008 (2012).
    [Crossref]
  112. C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
    [Crossref]
  113. A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
    [Crossref]
  114. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
    [Crossref]
  115. S. A. Vázquez-Córdova, “Erbium-doped channel waveguide amplifiers in amorphous aluminum oxide and crystalline potassium double tungstate,” Ph.D. Thesis, University of Twente, The Netherlands (2017).
  116. J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
    [Crossref] [PubMed]
  117. J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
    [Crossref]
  118. J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
    [Crossref]
  119. L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, “Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers,” Appl. Phys. Lett. 100(1), 011109 (2012).
    [Crossref]
  120. L. Agazzi, “Spectroscopic excitation and quenching processes in rare-earth-ion-doped Al2O3 and their impact on amplifier and laser performance,” Ph.D. thesis, University of Twente, The Netherlands (2012).
  121. P. Loiko and M. Pollnau are preparing a manuscript titled “Quantitative analysis of cooperative upconversion in Al2O3:Yb3+”.
  122. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
    [Crossref] [PubMed]
  123. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
    [Crossref] [PubMed]
  124. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
    [Crossref] [PubMed]
  125. E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
    [Crossref] [PubMed]
  126. H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
    [Crossref]
  127. D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
    [Crossref]
  128. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
    [Crossref]
  129. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
    [Crossref] [PubMed]
  130. C. J. Brooks, G. L. Vossler, and K. A. Winick, “Integrated-optic dispersion compensator that uses chirped gratings,” Opt. Lett. 20(4), 368–370 (1995).
    [Crossref] [PubMed]
  131. G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” Proc. SPIE 798, 104–114 (1987).
    [Crossref]
  132. S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
    [Crossref]
  133. G. A. Ball, W. W. Morey, and W. H. Glenn, “Standing-wave monomode erbium fiber laser,” IEEE Photonics Technol. Lett. 3(7), 613–615 (1991).
    [Crossref]
  134. S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
    [Crossref]
  135. C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, “Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating,” Opt. Lett. 23(15), 1194–1196 (1998).
    [Crossref] [PubMed]
  136. B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73(5−6), 439–442 (2001).
    [Crossref]
  137. B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 82(10), 1515–1517 (2003).
    [Crossref]
  138. B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
    [Crossref] [PubMed]
  139. S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photonics Technol. Lett. 15(4), 516–518 (2003).
    [Crossref]
  140. L. Bastard, S. Blaize, and J. E. Broquin, “Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications,” Opt. Eng. 42(10), 2800–2804 (2003).
    [Crossref]
  141. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33(9), 956–958 (2008).
    [Crossref] [PubMed]
  142. T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
    [Crossref]
  143. E. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106,” Photon. Nanostructures 9(3), 225–234 (2011).
    [Crossref]
  144. J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [Crossref] [PubMed]
  145. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013).
    [Crossref] [PubMed]
  146. M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
    [Crossref]
  147. E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
    [Crossref]
  148. A. Suzuki and K. Tada, “Theory and experiment on distributed feedback lasers with chirped grating,” Proc. SPIE 0239, 10–18 (1981).
    [Crossref]
  149. P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett. 56(15), 1400–1402 (1990).
    [Crossref]
  150. H. Hillmer, A. Grabmeier, S. Hansmann, and H. Burkhard, “Continuously distributed phase shifts in chirped DFB lasers using bent waveguides,” Electron. Lett. 30(18), 1483–1484 (1994).
    [Crossref]
  151. Y. A. C. Livanos, A. Katzir, and A. Yariv, “Fabrication of grating structures with variable period,” Opt. Commun. 20(1), 179–182 (1977).
    [Crossref]
  152. A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
    [Crossref]
  153. N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
    [Crossref]
  154. G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
    [Crossref]
  155. P. Zhou and G. S. Lee, “Chirped grating λ/4 shifted DFB laser with uniform longitudinal field distribution,” Electron. Lett. 26(20), 1660–1661 (1990).
    [Crossref]
  156. M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
    [Crossref]
  157. S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express 14(7), 2898–2903 (2006).
    [Crossref] [PubMed]
  158. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006).
    [Crossref] [PubMed]
  159. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
    [Crossref]
  160. E. H. Bernhardi, “Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications,” Ph.D. Thesis, University of Twente, The Netherlands (2012).
  161. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
    [Crossref]
  162. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
    [Crossref]
  163. M. Pollnau, “Analysis of heat generation and thermal lensing in erbium 3-µm lasers,” IEEE J. Quantum Electron. 39(2), 350–357 (2003).
    [Crossref]
  164. C. C. Kores, N. Ismail, D. Geskus, M. Dijkstra, E. H. Bernhardi, and M. Pollnau, “Temperature dependence of the spectral characteristics of distributed-feedback resonators,” Opt. Express 26(4), 4892–4905 (2018).
    [Crossref] [PubMed]
  165. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19(23), 2027–2029 (1994).
    [Crossref] [PubMed]
  166. J. A. Rogers, B. J. Eggleton, R. J. Jackman, G. R. Kowach, and T. A. Strasser, “Dual on-fiber thin-film heaters for fiber gratings with independently adjustable chirp and wavelength,” Opt. Lett. 24(19), 1328–1330 (1999).
    [Crossref] [PubMed]
  167. N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
    [Crossref] [PubMed]
  168. Y. T. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron. 44(10), 938–945 (2008).
    [Crossref]
  169. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  170. G. A. Miller, J. R. Peele, C. G. Askins, and G. A. Cranch, “Characterization of strong fiber Bragg gratings using an applied thermal chirp and iterative algorithm,” Appl. Opt. 50(36), 6617–6626 (2011).
    [Crossref] [PubMed]
  171. S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings used in lasers for spectral control,” J. Opt. Soc. Am. B 30(6), 1402–1409 (2013).
    [Crossref]
  172. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975), Chap. 1.
  173. P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
    [Crossref]
  174. K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
    [Crossref]
  175. M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 23(6), 815–821 (1987).
    [Crossref]
  176. H. Soda and H. Imai, “Analysis of the spectrum behavior below the threshold in DFB lasers,” IEEE J. Quantum Electron. 22(5), 637–641 (1986).
    [Crossref]
  177. M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300−550 K and their effects on the 1.6 µm laser transition,” Appl. Phys. B 91(2), 249–256 (2008).
    [Crossref]
  178. Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
    [Crossref] [PubMed]
  179. C. J. Wu, B. H. Chu, and M. T. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector,” J. Electromagn. Waves Appl. 23(1), 129–138 (2009).
    [Crossref]
  180. J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
    [Crossref]
  181. T. Makino, “Transfer matrix method with applications to distributed feedback optical devices,” Prog. Electromagn. Res. PIER 10, 271–319 (1995).
  182. G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol. 5(1), 140–146 (1987).
    [Crossref]
  183. N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
    [Crossref] [PubMed]
  184. N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
    [Crossref] [PubMed]
  185. M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
    [Crossref]
  186. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Distributed feedback channel waveguide lasers in erbium- and ytterbium-doped Al2O3 on silicon,” Conference on Lasers and Electro-Optics Europe, Munich, Germany, 2011, Conference Digest, paper CJ10.4.
  187. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]
  188. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
    [Crossref]
  189. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonantor-based integrated photonic beamformer for broadband phased array receive antennas-Part I: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
    [Crossref]
  190. D. Marpaung, C. Roeloffzen, W. Beeker, B. Noharet, J. Verpoorte, and R. Baggen, “Development of a Broadband and Squint-Free Ku-Band Phased Array Antenna System for Airborne Satellite Communications,” in Future Aeronautical Communications, S. Plass, ed. (InTech, 2011), pp. 201–222.
  191. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  192. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  193. J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photonics Technol. Lett. 18(23), 2493–2495 (2006).
    [Crossref]
  194. R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
    [Crossref]
  195. G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
    [Crossref]
  196. N. X. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-mu m emission on silicon chips: monolithically integrated Holmium lasers,” Opt. Express 26(3), 2220–2230 (2018).
    [Crossref] [PubMed]
  197. C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. D. B. Bradley, M. Y. Peng, N. Li, E. S. Magden, N.A. Purnawirman, M. Y., Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in CLEO: Science and Innovations Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper SM2I.5.
  198. P. T. Callahan, K. Shtyrkova, N. Li, E. S. Magden, and C. Purnawirman, Baiocco, D. Coolbaugh, E. P. Ippen, M. Watts, and F. X. Kärtner, “Fully-integrated CMOS-compatible Q-switched laser at 1.9µm using thulium-doped Al2O3,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper STh3N.2.
    [Crossref]
  199. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22(9), 10655–10660 (2014).
    [Crossref] [PubMed]
  200. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  201. M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium-doped DBR laser on an ultra-low-loss Si3N4 platform,” in Optical Fiber Communication Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper Tu2C.7.
    [Crossref]
  202. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181–1188 (2013).
    [Crossref] [PubMed]
  203. N. Li, P. Purnawirman, Z. Su, E. Salih Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
    [Crossref] [PubMed]
  204. E. S. Hosseini, J. D. B. Purnawirman, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
    [Crossref] [PubMed]
  205. G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
    [Crossref] [PubMed]
  206. N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
    [Crossref] [PubMed]
  207. N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
    [Crossref] [PubMed]
  208. E. S. Magden, N. Li, J. D. B. Purnawirman, N. Bradley, A. Singh, G. S. Ruocco, G. Petrich, D. D. Leake, E. P. Coolbaugh, M. R. Ippen, Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
    [Crossref] [PubMed]
  209. N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).
  210. J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
    [Crossref] [PubMed]
  211. Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
    [Crossref] [PubMed]

2018 (2)

2017 (7)

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

E. S. Magden, N. Li, J. D. B. Purnawirman, N. Bradley, A. Singh, G. S. Ruocco, G. Petrich, D. D. Leake, E. P. Coolbaugh, M. R. Ippen, Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

N. Li, P. Purnawirman, Z. Su, E. Salih Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
[Crossref] [PubMed]

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

2016 (7)

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref] [PubMed]

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
[Crossref] [PubMed]

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

2015 (3)

M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602512 (2015).
[Crossref]

M. Eichhorn and M. Pollnau, “Spectroscopic foundations of lasers: Spontaneous emission into a resonator mode,” IEEE J. Sel. Top. Quantum Electron. 21(1), 9000216 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

2014 (7)

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
[Crossref] [PubMed]

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

E. S. Hosseini, J. D. B. Purnawirman, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22(9), 10655–10660 (2014).
[Crossref] [PubMed]

2013 (15)

M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181–1188 (2013).
[Crossref] [PubMed]

S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings used in lasers for spectral control,” J. Opt. Soc. Am. B 30(6), 1402–1409 (2013).
[Crossref]

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

F. Starecki, W. Bolaños, A. Braud, J. L. Doualan, G. Brasse, A. Benayad, V. Nazabal, B. Xu, R. Moncorgé, and P. Camy, “Red and orange Pr3+:LiYF4 planar waveguide laser,” Opt. Lett. 38(4), 455–457 (2013).
[Crossref] [PubMed]

N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38(14), 2431–2433 (2013).
[Crossref] [PubMed]

W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
[Crossref] [PubMed]

D. Geskus, E. H. Bernhardi, K. van Dalfsen, S. Aravazhi, and M. Pollnau, “Highly efficient Yb3+-doped channel waveguide laser at 981 nm,” Opt. Express 21(11), 13773–13778 (2013).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46(3), 103–110 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
[Crossref]

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013).
[Crossref] [PubMed]

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

2012 (9)

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
[Crossref] [PubMed]

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

F. Ay, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Focused-ion-beam nano-structuring of Al2O3 dielectric layers for photonic applications,” J. Micromech. Microeng. 22(10), 105008 (2012).
[Crossref]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, “Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers,” Appl. Phys. Lett. 100(1), 011109 (2012).
[Crossref]

A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
[Crossref] [PubMed]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

2011 (9)

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

B. Charlet, L. Bastard, and J. E. Broquin, “1 kW peak power passively Q-switched Nd3+-doped glass integrated waveguide laser,” Opt. Lett. 36(11), 1987–1989 (2011).
[Crossref] [PubMed]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

E. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106,” Photon. Nanostructures 9(3), 225–234 (2011).
[Crossref]

G. A. Miller, J. R. Peele, C. G. Askins, and G. A. Cranch, “Characterization of strong fiber Bragg gratings using an applied thermal chirp and iterative algorithm,” Appl. Opt. 50(36), 6617–6626 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

2010 (17)

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonantor-based integrated photonic beamformer for broadband phased array receive antennas-Part I: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

C. Grivas, J. Yang, M. B. J. Diemeer, A. Driessen, and M. Pollnau, “Continuous-wave Nd-doped polymer lasers,” Opt. Lett. 35(12), 1983–1985 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref] [PubMed]

A. Z. Subramaniam, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photonics Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

2009 (10)

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
[Crossref] [PubMed]

F. M. Bain, A. A. Lagatsky, S. V. Kurilchick, V. E. Kisel, S. A. Guretsky, A. M. Luginets, N. A. Kalanda, I. M. Kolesova, N. V. Kuleshov, W. Sibbett, and C. T. A. Brown, “Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser,” Opt. Express 17(3), 1666–1670 (2009).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
[Crossref] [PubMed]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34(18), 2718–2720 (2009).
[PubMed]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

C. J. Wu, B. H. Chu, and M. T. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector,” J. Electromagn. Waves Appl. 23(1), 129–138 (2009).
[Crossref]

2008 (6)

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300−550 K and their effects on the 1.6 µm laser transition,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Y. T. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron. 44(10), 938–945 (2008).
[Crossref]

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33(9), 956–958 (2008).
[Crossref] [PubMed]

G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16(16), 12334–12341 (2008).
[Crossref] [PubMed]

D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, and E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16(23), 19221–19231 (2008).
[Crossref] [PubMed]

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

2007 (7)

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO4)2 waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref] [PubMed]

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
[Crossref] [PubMed]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

2006 (9)

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photonics Technol. Lett. 18(23), 2493–2495 (2006).
[Crossref]

S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express 14(7), 2898–2903 (2006).
[Crossref] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006).
[Crossref] [PubMed]

J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
[Crossref] [PubMed]

T.-Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
[Crossref] [PubMed]

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref] [PubMed]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

2005 (5)

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

C. Grivas, D. Shepherd, T. May-Smith, R. Eason, and M. Pollnau, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13(1), 210–215 (2005).
[Crossref] [PubMed]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[Crossref] [PubMed]

2004 (5)

2003 (6)

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photonics Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

L. Bastard, S. Blaize, and J. E. Broquin, “Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications,” Opt. Eng. 42(10), 2800–2804 (2003).
[Crossref]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 82(10), 1515–1517 (2003).
[Crossref]

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

J. J. Mackenzie, C. Li, and D. P. Shepherd, “Multi-Watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[Crossref]

M. Pollnau, “Analysis of heat generation and thermal lensing in erbium 3-µm lasers,” IEEE J. Quantum Electron. 39(2), 350–357 (2003).
[Crossref]

2002 (5)

J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, and D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27(7), 524–526 (2002).
[Crossref] [PubMed]

J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27(24), 2161–2163 (2002).
[Crossref] [PubMed]

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

2001 (5)

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
[Crossref]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73(5−6), 439–442 (2001).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001).
[Crossref] [PubMed]

2000 (6)

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
[Crossref]

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36(9), 1089–1097 (2000).
[Crossref]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

1999 (4)

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
[Crossref]

D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
[Crossref]

J. A. Rogers, B. J. Eggleton, R. J. Jackman, G. R. Kowach, and T. A. Strasser, “Dual on-fiber thin-film heaters for fiber gratings with independently adjustable chirp and wavelength,” Opt. Lett. 24(19), 1328–1330 (1999).
[Crossref] [PubMed]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

1998 (4)

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, “Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating,” Opt. Lett. 23(15), 1194–1196 (1998).
[Crossref] [PubMed]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1−3), 203–211 (1998).
[Crossref]

1997 (6)

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36(15), 3338–3441 (1997).
[Crossref] [PubMed]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref] [PubMed]

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelínek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[Crossref] [PubMed]

C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3 Ga5O12 waveguide laser at 1.06 and 0.94 µm,” Opt. Lett. 22(13), 988–990 (1997).
[Crossref] [PubMed]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

1996 (3)

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

1995 (4)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

C. J. Brooks, G. L. Vossler, and K. A. Winick, “Integrated-optic dispersion compensator that uses chirped gratings,” Opt. Lett. 20(4), 368–370 (1995).
[Crossref] [PubMed]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

T. Makino, “Transfer matrix method with applications to distributed feedback optical devices,” Prog. Electromagn. Res. PIER 10, 271–319 (1995).

1994 (4)

J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19(23), 2027–2029 (1994).
[Crossref] [PubMed]

H. Hillmer, A. Grabmeier, S. Hansmann, and H. Burkhard, “Continuously distributed phase shifts in chirped DFB lasers using bent waveguides,” Electron. Lett. 30(18), 1483–1484 (1994).
[Crossref]

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111(3−4), 263–268 (1994).
[Crossref]

1993 (1)

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

1992 (2)

T. Kunii and Y. Matsui, “Narrow spectral linewidth semiconductor lasers,” Opt. Quantum Electron. 24(7), 719–735 (1992).
[Crossref]

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

1991 (2)

M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
[Crossref]

G. A. Ball, W. W. Morey, and W. H. Glenn, “Standing-wave monomode erbium fiber laser,” IEEE Photonics Technol. Lett. 3(7), 613–615 (1991).
[Crossref]

1990 (3)

J. J. Zayhowski, “Microchip lasers,” Linc. Lab. J. 3(3), 427–446 (1990).

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett. 56(15), 1400–1402 (1990).
[Crossref]

P. Zhou and G. S. Lee, “Chirped grating λ/4 shifted DFB laser with uniform longitudinal field distribution,” Electron. Lett. 26(20), 1660–1661 (1990).
[Crossref]

1989 (1)

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

1988 (2)

R. I. Laming, S. B. Poole, and E. J. Tarbox, “Pump excited-state absorption in erbium-doped fibers,” Opt. Lett. 13(12), 1084–1086 (1988).
[Crossref] [PubMed]

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[Crossref]

1987 (3)

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” Proc. SPIE 798, 104–114 (1987).
[Crossref]

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 23(6), 815–821 (1987).
[Crossref]

G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol. 5(1), 140–146 (1987).
[Crossref]

1986 (2)

H. Soda and H. Imai, “Analysis of the spectrum behavior below the threshold in DFB lasers,” IEEE J. Quantum Electron. 22(5), 637–641 (1986).
[Crossref]

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

1985 (1)

1984 (1)

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

1981 (1)

A. Suzuki and K. Tada, “Theory and experiment on distributed feedback lasers with chirped grating,” Proc. SPIE 0239, 10–18 (1981).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

1977 (2)

Y. A. C. Livanos, A. Katzir, and A. Yariv, “Fabrication of grating structures with variable period,” Opt. Commun. 20(1), 179–182 (1977).
[Crossref]

A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

1974 (1)

S. R. Chinn and P. L. Kelley, “Analysis of the transmission, reflection and noise properties of distributed feedback laser amplifiers,” Opt. Commun. 10(2), 123–126 (1974).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

1971 (3)

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18(9), 395–396 (1971).
[Crossref]

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18(11), 497–499 (1971).
[Crossref]

1970 (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Acket, G. A.

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

Adam, T. N.

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

E. S. Hosseini, J. D. B. Purnawirman, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

Agazzi, L.

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, “Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers,” Appl. Phys. Lett. 100(1), 011109 (2012).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[Crossref]

Ahn, K. J.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

Akhmadaliev, S.

Akiba, S.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 23(6), 815–821 (1987).
[Crossref]

Albert, J.

S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express 14(7), 2898–2903 (2006).
[Crossref] [PubMed]

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Ali, R.

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Ams, M.

Anderson, A. A.

Andrés, M. V.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

Anthony, P. J.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[Crossref]

Apostolopoulos, V.

Aravazhi, S.

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

D. Geskus, E. H. Bernhardi, K. van Dalfsen, S. Aravazhi, and M. Pollnau, “Highly efficient Yb3+-doped channel waveguide laser at 981 nm,” Opt. Express 21(11), 13773–13778 (2013).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Askins, C. G.

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Ay, F.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

F. Ay, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Focused-ion-beam nano-structuring of Al2O3 dielectric layers for photonic applications,” J. Micromech. Microeng. 22(10), 105008 (2012).
[Crossref]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

Ayliffe, P. J.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Bae, S.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

Baehr-Jones, T.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Baets, R.

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Baets, R. G.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

Bain, F. M.

Baiocco, C.

Baker, H. J.

Bakker, A.

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

Baldycheva, A.

Ball, G. A.

G. A. Ball, W. W. Morey, and W. H. Glenn, “Standing-wave monomode erbium fiber laser,” IEEE Photonics Technol. Lett. 3(7), 613–615 (1991).
[Crossref]

Balsamo, S.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Barbier, D.

G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16(16), 12334–12341 (2008).
[Crossref] [PubMed]

E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
[Crossref]

Barton, J. S.

Bass, M.

Bastard, L.

B. Charlet, L. Bastard, and J. E. Broquin, “1 kW peak power passively Q-switched Nd3+-doped glass integrated waveguide laser,” Opt. Lett. 36(11), 1987–1989 (2011).
[Crossref] [PubMed]

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photonics Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

L. Bastard, S. Blaize, and J. E. Broquin, “Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications,” Opt. Eng. 42(10), 2800–2804 (2003).
[Crossref]

Bauters, J. F.

Beach, R. J.

R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001).
[Crossref] [PubMed]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Becker, C.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, “Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating,” Opt. Lett. 23(15), 1194–1196 (1998).
[Crossref] [PubMed]

Belt, M.

Benayad, A.

Bennett, W. J.

Bentum, M. J.

Bernhardi, E.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Bernhardi, E. H.

C. C. Kores, N. Ismail, D. Geskus, M. Dijkstra, E. H. Bernhardi, and M. Pollnau, “Temperature dependence of the spectral characteristics of distributed-feedback resonators,” Opt. Express 26(4), 4892–4905 (2018).
[Crossref] [PubMed]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

D. Geskus, E. H. Bernhardi, K. van Dalfsen, S. Aravazhi, and M. Pollnau, “Highly efficient Yb3+-doped channel waveguide laser at 981 nm,” Opt. Express 21(11), 13773–13778 (2013).
[Crossref] [PubMed]

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, “Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers,” Appl. Phys. Lett. 100(1), 011109 (2012).
[Crossref]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

E. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106,” Photon. Nanostructures 9(3), 225–234 (2011).
[Crossref]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

Bhutta, T.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Bilodeau, F.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Björk, G.

G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol. 5(1), 140–146 (1987).
[Crossref]

Bjorkholm, J. E.

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18(9), 395–396 (1971).
[Crossref]

Blaize, S.

L. Bastard, S. Blaize, and J. E. Broquin, “Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications,” Opt. Eng. 42(10), 2800–2804 (2003).
[Crossref]

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photonics Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

Blumenthal, D. J.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bogaerts, W.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Bolanos, W.

Bolaños, W.

Bon, M.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Bonner, C. L.

Borca, C. N.

Borel, C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Bovington, J.

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181–1188 (2013).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Bradley, J. D.

Bradley, J. D. B.

N. X. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-mu m emission on silicon chips: monolithically integrated Holmium lasers,” Opt. Express 26(3), 2220–2230 (2018).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34(18), 2718–2720 (2009).
[PubMed]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

Bradley, N.

Bramerie, L.

Brasse, G.

Braud, A.

Brooks, C. J.

Broquin, J. E.

B. Charlet, L. Bastard, and J. E. Broquin, “1 kW peak power passively Q-switched Nd3+-doped glass integrated waveguide laser,” Opt. Lett. 36(11), 1987–1989 (2011).
[Crossref] [PubMed]

L. Bastard, S. Blaize, and J. E. Broquin, “Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications,” Opt. Eng. 42(10), 2800–2804 (2003).
[Crossref]

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photonics Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Brown, C. T. A.

Bruinink, C. M.

Burkhard, H.

H. Hillmer, A. Grabmeier, S. Hansmann, and H. Burkhard, “Continuously distributed phase shifts in chirped DFB lasers using bent waveguides,” Electron. Lett. 30(18), 1483–1484 (1994).
[Crossref]

Burla, M.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonantor-based integrated photonic beamformer for broadband phased array receive antennas-Part I: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

Byer, R. L.

Byrd, M.

Byrd, M. J.

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

Byun, H.

Callahan, P. T.

Calmano, T.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Camy, P.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Carjaval, J. J.

Cassagnetes, C.

G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16(16), 12334–12341 (2008).
[Crossref] [PubMed]

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photonics Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Castro, J. M.

Cerullo, G.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
[Crossref] [PubMed]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
[Crossref] [PubMed]

Chambaz, B.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

Chandler, P. J.

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

Chandross, E. A.

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18(11), 497–499 (1971).
[Crossref]

Charlet, B.

Charlton, M. D. B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Chartier, I.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

Chen, F.

Chen, J.

Chen, N.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

Chen, Q. Y.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46(3), 103–110 (2013).
[Crossref]

Chen, X.

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photonics Technol. Lett. 18(23), 2493–2495 (2006).
[Crossref]

Cheng, C.

Chinn, S. R.

S. R. Chinn and P. L. Kelley, “Analysis of the transmission, reflection and noise properties of distributed feedback laser amplifiers,” Opt. Commun. 10(2), 123–126 (1974).
[Crossref]

Chinone, N.

M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
[Crossref]

Chiodo, N.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
[Crossref] [PubMed]

Choi, S. Y.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

Choudhary, A.

Chu, B. H.

C. J. Wu, B. H. Chu, and M. T. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector,” J. Electromagn. Waves Appl. 23(1), 129–138 (2009).
[Crossref]

Chung, T.-Y.

Cianci, E.

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

Clarkson, W. A.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1−3), 203–211 (1998).
[Crossref]

Coleman, J. J.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Coolbaugh, D.

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

Coolbaugh, D. D.

Coolbaugh, E. P.

Costa e Silva, M.

Costantini, D. M.

D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
[Crossref]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Cranch, G. A.

Crunteanu, A.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

Cruz, J. L.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

Dai, Y.

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photonics Technol. Lett. 18(23), 2493–2495 (2006).
[Crossref]

Dai, Y. T.

Y. T. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron. 44(10), 938–945 (2008).
[Crossref]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Das, B. K.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[Crossref] [PubMed]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 82(10), 1515–1517 (2003).
[Crossref]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73(5−6), 439–442 (2001).
[Crossref]

Davenport, M. L.

de Ridder, R. M.

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

F. Ay, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Focused-ion-beam nano-structuring of Al2O3 dielectric layers for photonic applications,” J. Micromech. Microeng. 22(10), 105008 (2012).
[Crossref]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

E. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106,” Photon. Nanostructures 9(3), 225–234 (2011).
[Crossref]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

Dekker, P.

Della Valle, G.

G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16(16), 12334–12341 (2008).
[Crossref] [PubMed]

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
[Crossref] [PubMed]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

Descroix, E.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Dey, D.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

Díaz, F.

Diemeer, M. B. J.

C. Grivas, J. Yang, M. B. J. Diemeer, A. Driessen, and M. Pollnau, “Continuous-wave Nd-doped polymer lasers,” Opt. Lett. 35(12), 1983–1985 (2010).
[Crossref] [PubMed]

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

Dijkstra, M.

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Dong, X.

Doualan, J. L.

Doualan, J.-L.

Driessen, A.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

C. Grivas, J. Yang, M. B. J. Diemeer, A. Driessen, and M. Pollnau, “Continuous-wave Nd-doped polymer lasers,” Opt. Lett. 35(12), 1983–1985 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

Dubinskii, M.

Dumon, P.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Dunphy, J. R.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” Proc. SPIE 798, 104–114 (1987).
[Crossref]

Eason, R.

Eason, R. W.

C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
[Crossref] [PubMed]

L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, J. S. Wilkinson, and A. A. Anderson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B 21(8), 1452–1462 (2004).
[Crossref]

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3 Ga5O12 waveguide laser at 1.06 and 0.94 µm,” Opt. Lett. 22(13), 988–990 (1997).
[Crossref] [PubMed]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelínek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Eichhorn, M.

M. Eichhorn and M. Pollnau, “Spectroscopic foundations of lasers: Spontaneous emission into a resonator mode,” IEEE J. Sel. Top. Quantum Electron. 21(1), 9000216 (2015).
[Crossref]

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300−550 K and their effects on the 1.6 µm laser transition,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Elarde, V. C.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Ennser, K.

Fang, Z.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46(3), 103–110 (2013).
[Crossref]

Farina, J. D.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” Proc. SPIE 798, 104–114 (1987).
[Crossref]

Fechner, M.

Fedeli, J.-M.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Ferrand, B.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

Ferrari, A. C.

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

Ferraris, M.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Festa, A.

Field, S. J.

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

Fischer, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Foglietti, V.

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

Fontaine, N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Forchel, A.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Fox, G. R.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Fredrich-Thornton, S. T.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300−550 K and their effects on the 1.6 µm laser transition,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Friel, G. J.

J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, and D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27(7), 524–526 (2002).
[Crossref] [PubMed]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

Fromzel, V.

Fu, A.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Fuerbach, A.

Fujimura, M.

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

Fulbert, L.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Funk, D. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Galzerano, G.

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

García-Blanco, S. M.

Gardillou, F.

Garnier, N.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Gawith, C. B. E.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Gay, M.

Geraghty, D. F.

Geskus, D.

C. C. Kores, N. Ismail, D. Geskus, M. Dijkstra, E. H. Bernhardi, and M. Pollnau, “Temperature dependence of the spectral characteristics of distributed-feedback resonators,” Opt. Express 26(4), 4892–4905 (2018).
[Crossref] [PubMed]

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
[Crossref] [PubMed]

D. Geskus, E. H. Bernhardi, K. van Dalfsen, S. Aravazhi, and M. Pollnau, “Highly efficient Yb3+-doped channel waveguide laser at 981 nm,” Opt. Express 21(11), 13773–13778 (2013).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Geusic, J. E.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[Crossref]

Gill, D. S.

Glebov, L. B.

Glenn, W. H.

G. A. Ball, W. W. Morey, and W. H. Glenn, “Standing-wave monomode erbium fiber laser,” IEEE Photonics Technol. Lett. 3(7), 613–615 (1991).
[Crossref]

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” Proc. SPIE 798, 104–114 (1987).
[Crossref]

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Gong, M.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Götelid, M.

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

Grabmeier, A.

H. Hillmer, A. Grabmeier, S. Hansmann, and H. Burkhard, “Continuously distributed phase shifts in chirped DFB lasers using bent waveguides,” Electron. Lett. 30(18), 1483–1484 (1994).
[Crossref]

Greiner, A.

Greiner, C. M.

Griebner, U.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
[Crossref] [PubMed]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

C. Grivas, J. Yang, M. B. J. Diemeer, A. Driessen, and M. Pollnau, “Continuous-wave Nd-doped polymer lasers,” Opt. Lett. 35(12), 1983–1985 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
[Crossref] [PubMed]

C. Grivas, D. Shepherd, T. May-Smith, R. Eason, and M. Pollnau, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13(1), 210–215 (2005).
[Crossref] [PubMed]

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3 Ga5O12 waveguide laser at 1.06 and 0.94 µm,” Opt. Lett. 22(13), 988–990 (1997).
[Crossref] [PubMed]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelínek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[Crossref] [PubMed]

Gross, S.

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Günther, D.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Guo-Qiang Lo, P.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Guretsky, S. A.

Guyot, Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Hall, D. R.

Hametner, K.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Hanna, D. C.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1−3), 203–211 (1998).
[Crossref]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

Hansmann, S.

H. Hillmer, A. Grabmeier, S. Hansmann, and H. Burkhard, “Continuously distributed phase shifts in chirped DFB lasers using bent waveguides,” Electron. Lett. 30(18), 1483–1484 (1994).
[Crossref]

Harada, T.

M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
[Crossref]

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1−3), 203–211 (1998).
[Crossref]

Harkema, S.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Hassan, M. A.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Hastings, J. T.

Hattori, K.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Hayden, J. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Heck, M. J. R.

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Heideman, R. G.

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Heinrich, S.

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Herek, J. L.

Heumann, E.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300−550 K and their effects on the 1.6 µm laser transition,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

Hibert, C.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

Hibino, Y.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Hickey, L. M. B.

Hill, K. O.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Hillmer, H.

H. Hillmer, A. Grabmeier, S. Hansmann, and H. Burkhard, “Continuously distributed phase shifts in chirped DFB lasers using bent waveguides,” Electron. Lett. 30(18), 1483–1484 (1994).
[Crossref]

Hilton, G. J.

Hirono, T.

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
[Crossref]

Hochberg, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Hoekstra, H. J. W. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

Hoffmann, P.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

Hollink, A. J. F.

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

Hong, J.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Honkanen, S.

Horst, F.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

Hosseini, E. S.

Houde-Walter, S. N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Hua, P.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Huang, W.

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Huber, G.

Huffman, T.

Hulzinga, A.

Iazikov, D.

Imai, H.

H. Soda and H. Imai, “Analysis of the spectrum behavior below the threshold in DFB lasers,” IEEE J. Quantum Electron. 22(5), 637–641 (1986).
[Crossref]

Ippen, E. P.

Ippen, M. R.

Ismail, N.

Jackman, R. J.

Jackson, S. D.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Jacobsson, B.

Jänchen, G.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

Jelinek, M.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

Jelínek, M.

Jiang, S.

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

Jihnson, D. C.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

John, D. D.

Jones, D. J.

E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
[Crossref]

Jorna, P.

Jose, G.

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

Jovanovic, N.

Kahn, A.

Kalanda, N. A.

Kaminov, I. P.

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18(11), 497–499 (1971).
[Crossref]

Kamp, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Kane, T. J.

Kang, H. X.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Kannan, P.

Kärtner, F. X.

Katzir, A.

Y. A. C. Livanos, A. Katzir, and A. Yariv, “Fabrication of grating structures with variable period,” Opt. Commun. 20(1), 179–182 (1977).
[Crossref]

A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Kauppinen, L. J.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

Kelley, P. L.

S. R. Chinn and P. L. Kelley, “Analysis of the transmission, reflection and noise properties of distributed feedback laser amplifiers,” Opt. Commun. 10(2), 123–126 (1974).
[Crossref]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Khan, M. R. H.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Killi, A.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
[Crossref] [PubMed]

Kim, J. W.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

King, T. A.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

Kisel, V. E.

Kitagawa, T.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Koeth, J.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18(9), 395–396 (1971).
[Crossref]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

Kolesova, I. M.

Kolodziejski, L. A.

E. S. Magden, N. Li, J. D. B. Purnawirman, N. Bradley, A. Singh, G. S. Ruocco, G. Petrich, D. D. Leake, E. P. Coolbaugh, M. R. Ippen, Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref] [PubMed]

E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Kondo, S.

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
[Crossref]

Koontz, E. M.

E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
[Crossref]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Kopf, D.

Kores, C. C.

Kowach, G. R.

Krupke, W. F.

Kuan, K.

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Kühn, H.

Kuleshov, N. V.

Kunii, T.

T. Kunii and Y. Matsui, “Narrow spectral linewidth semiconductor lasers,” Opt. Quantum Electron. 24(7), 719–735 (1992).
[Crossref]

Kurilchick, S. V.

Ky, N. H.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Lagatsky, A. A.

Lahoz, F.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Lambeck, P. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36(9), 1089–1097 (2000).
[Crossref]

Laming, R. I.

Lamprecht, T.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

Lancaster, D. G.

Laporta, P.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
[Crossref] [PubMed]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
[Crossref] [PubMed]

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

Laporte, P.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Large, A. C.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

Laurell, F.

Lauzon, J.

Laversenne, L.

Leake, D. D.

Leake, G.

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

E. S. Hosseini, J. D. B. Purnawirman, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

Lederer, M.

Lee, G. S.

P. Zhou and G. S. Lee, “Chirped grating λ/4 shifted DFB laser with uniform longitudinal field distribution,” Electron. Lett. 26(20), 1660–1661 (1990).
[Crossref]

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett. 56(15), 1400–1402 (1990).
[Crossref]

Lee, J. R.

Legge, M.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Leinse, A.

Leonberger, F. J.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” Proc. SPIE 798, 104–114 (1987).
[Crossref]

Li, C.

J. J. Mackenzie, C. Li, and D. P. Shepherd, “Multi-Watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[Crossref]

Li, N.

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

N. Li, P. Purnawirman, Z. Su, E. Salih Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

E. S. Magden, N. Li, J. D. B. Purnawirman, N. Bradley, A. Singh, G. S. Ruocco, G. Petrich, D. D. Leake, E. P. Coolbaugh, M. R. Ippen, Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

Li, N. X.

N. X. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-mu m emission on silicon chips: monolithically integrated Holmium lasers,” Opt. Express 26(3), 2220–2230 (2018).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

Li, W.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Lim, A. E.-J.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Limberger, H. G.

D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
[Crossref]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Liu, D.

Liu, W. C.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Livanos, A.

A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Livanos, Y. A. C.

Y. A. C. Livanos, A. Katzir, and A. Yariv, “Fabrication of grating structures with variable period,” Opt. Commun. 20(1), 179–182 (1977).
[Crossref]

Loiko, P.

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Lu, Q.

E. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106,” Photon. Nanostructures 9(3), 225–234 (2011).
[Crossref]

Luginets, A. M.

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27(24), 2161–2163 (2002).
[Crossref] [PubMed]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Mackenzie, J. J.

J. J. Mackenzie, C. Li, and D. P. Shepherd, “Multi-Watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[Crossref]

Magden, E. S.

N. X. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-mu m emission on silicon chips: monolithically integrated Holmium lasers,” Opt. Express 26(3), 2220–2230 (2018).
[Crossref] [PubMed]

E. S. Magden, N. Li, J. D. B. Purnawirman, N. Bradley, A. Singh, G. S. Ruocco, G. Petrich, D. D. Leake, E. P. Coolbaugh, M. R. Ippen, Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25(15), 18058–18065 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

Makino, T.

T. Makino, “Transfer matrix method with applications to distributed feedback optical devices,” Prog. Electromagn. Res. PIER 10, 271–319 (1995).

J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10(12), 1860–1868 (1992).
[Crossref]

Malo, B.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Manaa, H.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Marpaung, D. A. I.

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonantor-based integrated photonic beamformer for broadband phased array receive antennas-Part I: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Marshall, G. D.

Martí, J.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

Martin, J.

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Mateos, X.

Matsui, Y.

T. Kunii and Y. Matsui, “Narrow spectral linewidth semiconductor lasers,” Opt. Quantum Electron. 24(7), 719–735 (1992).
[Crossref]

May-Smith, T.

May-Smith, T. C.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

McMahon, J. M.

Meijerink, A.

Meijerink, R.

Meissner, H.

Meissner, H. E.

R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001).
[Crossref] [PubMed]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Meissner, O. R.

Meltz, G.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, and F. J. Leonberger, “Fiber optic temperature and strain sensors,” Proc. SPIE 798, 104–114 (1987).
[Crossref]

Ménard, V.

Migliorati, D.

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

Milanese, D.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Miller, G. A.

Mitchell, S. C.

R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001).
[Crossref] [PubMed]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Moncorgé, R.

Monro, T. M.

Montrosset, I.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Moreira, R.

Moresco, M.

Moretti, P.

Morey, W. W.

G. A. Ball, W. W. Morey, and W. H. Glenn, “Standing-wave monomode erbium fiber laser,” IEEE Photonics Technol. Lett. 3(7), 613–615 (1991).
[Crossref]

Morgner, U.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
[Crossref] [PubMed]

Morthier, G. I.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

Mossberg, T. W.

Mu, X.

Muller, C. A. P.

D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
[Crossref]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Murphy, T. E.

Musa, S.

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36(9), 1089–1097 (2000).
[Crossref]

Nakano, Y.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

Nakao, M.

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Nazabal, V.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Netti, M. C.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Ngo, N. Q.

Nilsson, O.

G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol. 5(1), 140–146 (1987).
[Crossref]

Noguchi, Y.

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
[Crossref]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Obarski, G. E.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Oei, Y. S.

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

Oesselke, T.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, “Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating,” Opt. Lett. 23(15), 1194–1196 (1998).
[Crossref] [PubMed]

Offrein, B. J.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

Okai, M. M.

M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
[Crossref]

Okamoto, K.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Oku, S.

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
[Crossref]

Osellame, R.

G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 µm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
[Crossref] [PubMed]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
[Crossref] [PubMed]

Oton, C. J.

A. Z. Subramaniam, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photonics Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

Ouellette, F.

Palací, J.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

Pandavenes, J.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Pape, A.

Parker, G. J.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Pasiskevicius, V.

Payne, S. A.

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111(3−4), 263–268 (1994).
[Crossref]

Peele, J. R.

Pelenc, D.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

Pérez-Millán, P.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

Perney, N. M. B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Peskin, A. P.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Petermann, K.

Peters, P. M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Petrich, G.

Petrov, V.

Peyghambarian, N.

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

Pham, S. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

Piper, J. A.

Pollnau, M.

C. C. Kores, N. Ismail, D. Geskus, M. Dijkstra, E. H. Bernhardi, and M. Pollnau, “Temperature dependence of the spectral characteristics of distributed-feedback resonators,” Opt. Express 26(4), 4892–4905 (2018).
[Crossref] [PubMed]

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

Y. S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content,” Opt. Express 24(23), 26825–26837 (2016).
[Crossref] [PubMed]

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
[Crossref] [PubMed]

M. Eichhorn and M. Pollnau, “Spectroscopic foundations of lasers: Spontaneous emission into a resonator mode,” IEEE J. Sel. Top. Quantum Electron. 21(1), 9000216 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602512 (2015).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

D. Geskus, E. H. Bernhardi, K. van Dalfsen, S. Aravazhi, and M. Pollnau, “Highly efficient Yb3+-doped channel waveguide laser at 981 nm,” Opt. Express 21(11), 13773–13778 (2013).
[Crossref] [PubMed]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B 174, 602–608 (2012).
[Crossref]

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, “Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers,” Appl. Phys. Lett. 100(1), 011109 (2012).
[Crossref]

F. Ay, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Focused-ion-beam nano-structuring of Al2O3 dielectric layers for photonic applications,” J. Micromech. Microeng. 22(10), 105008 (2012).
[Crossref]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

E. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106,” Photon. Nanostructures 9(3), 225–234 (2011).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

C. Grivas, J. Yang, M. B. J. Diemeer, A. Driessen, and M. Pollnau, “Continuous-wave Nd-doped polymer lasers,” Opt. Lett. 35(12), 1983–1985 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
[Crossref] [PubMed]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34(18), 2718–2720 (2009).
[PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
[Crossref]

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO4)2 waveguide laser,” Opt. Express 15(9), 5885–5892 (2007).
[Crossref] [PubMed]

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref] [PubMed]

C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
[Crossref] [PubMed]

C. Grivas, D. Shepherd, T. May-Smith, R. Eason, and M. Pollnau, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13(1), 210–215 (2005).
[Crossref] [PubMed]

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

M. Pollnau, “Analysis of heat generation and thermal lensing in erbium 3-µm lasers,” IEEE J. Quantum Electron. 39(2), 350–357 (2003).
[Crossref]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62(2), 856–864 (2000).
[Crossref]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1−3), 203–211 (1998).
[Crossref]

Polman, A.

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36(15), 3338–3441 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

Poole, S. B.

Poulton, C. V.

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

Price, R. K.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Pudo, D.

Purnawirman, E. S.

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

Purnawirman, J.

Purnawirman, J. D. B.

Purnawirman, N. X.

Purnawirman, N.A.

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

Purnawirman, P.

Purnawirman, Z.

Quiring, V.

Rameix, A.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Ramponi, R.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

Rapaport, A.

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Reza, S.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

Richardson, M. C.

Ricken, R.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[Crossref] [PubMed]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 82(10), 1515–1517 (2003).
[Crossref]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Rivier, S.

Rivoire, J. Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19.,” Phys. Rev. B Condens. Matter 51(2), 784–799 (1995).
[Crossref] [PubMed]

Rochhausen, K.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Roelkens, G.

Roeloffzen, C. G. H.

Rogers, J. A.

Romanyuk, Y. E.

Rotermund, F.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

Rozhin, A. G.

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

Ruocco, A.

Ruocco, G. S.

Rustad, G.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

Salathé, R. P.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
[Crossref]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Saleem, M. R.

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Salih Magden, E.

Sanford, N. A.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Santis, C. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Scardaci, V.

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Schreiber, G.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Sciancalepore, D.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Sengo, G.

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

Seufert, J.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Shah Hosseini, E.

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18(9), 395–396 (1971).
[Crossref]

Shellan, J.

A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

Shepherd, D.

Shepherd, D. P.

A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
[Crossref] [PubMed]

A. Z. Subramaniam, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photonics Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
[Crossref] [PubMed]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

J. J. Mackenzie, C. Li, and D. P. Shepherd, “Multi-Watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[Crossref]

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett. 27(24), 2161–2163 (2002).
[Crossref] [PubMed]

R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001).
[Crossref] [PubMed]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, “Performance of a low-loss pulsed-laser-deposited Nd:Gd3 Ga5O12 waveguide laser at 1.06 and 0.94 µm,” Opt. Lett. 22(13), 988–990 (1997).
[Crossref] [PubMed]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

Shtyrkova, K.

Shum, P.

Sibbett, W.

Sickler, J.

Siebenmorgen, J.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Simon, J. C.

Singh, A.

Singh, G.

Singh, N.

N. X. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-mu m emission on silicon chips: monolithically integrated Holmium lasers,” Opt. Express 26(3), 2220–2230 (2018).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

Smirnov, V.

Smit, M. K.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36(15), 3338–3441 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

Smith, H. I.

Smith, L. K.

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111(3−4), 263–268 (1994).
[Crossref]

Smith, P. G. R.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Snoeks, E.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

Soda, H.

H. Soda and H. Imai, “Analysis of the spectrum behavior below the threshold in DFB lasers,” IEEE J. Quantum Electron. 22(5), 637–641 (1986).
[Crossref]

Sohler, W.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[Crossref] [PubMed]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 82(10), 1515–1517 (2003).
[Crossref]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73(5−6), 439–442 (2001).
[Crossref]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, “Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating,” Opt. Lett. 23(15), 1194–1196 (1998).
[Crossref] [PubMed]

Sorbello, G.

G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16(16), 12334–12341 (2008).
[Crossref] [PubMed]

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

Starecki, F.

Steel, M. J.

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Stenersen, K.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

Stoffer, R.

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

Strasser, T. A.

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Su, Z.

N. X. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-mu m emission on silicon chips: monolithically integrated Holmium lasers,” Opt. Express 26(3), 2220–2230 (2018).
[Crossref] [PubMed]

N. Li, P. Purnawirman, Z. Su, E. Salih Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

Subramaniam, A. Z.

A. Z. Subramaniam, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photonics Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

Subramaniam, V.

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

Suche, H.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[Crossref] [PubMed]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73(5−6), 439–442 (2001).
[Crossref]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, “Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating,” Opt. Lett. 23(15), 1194–1196 (1998).
[Crossref] [PubMed]

Suhara, T.

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

Sun, J.

Suzuki, A.

A. Suzuki and K. Tada, “Theory and experiment on distributed feedback lasers with chirped grating,” Proc. SPIE 0239, 10–18 (1981).
[Crossref]

Svelto, O.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
[Crossref] [PubMed]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

Taccheo, S.

Tada, K.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

A. Suzuki and K. Tada, “Theory and experiment on distributed feedback lasers with chirped grating,” Proc. SPIE 0239, 10–18 (1981).
[Crossref]

Tai, C. Y.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Tamamura, T.

S. Oku, S. Kondo, Y. Noguchi, T. Hirono, M. Nakao, and T. Tamamura, “Fabrication and performance of LnGaAlAs MQW distributed Bragg reflector lasers with grooved surface gratings formed by reactive beam etching,” Proc. Inst. Elect. Eng. Optoelectron. 146(1), 39–43 (1999).
[Crossref]

Tan, Y.

Tarbox, E. J.

Taylor, E. R.

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

Ter-Gabrielyan, N.

Thériault, S.

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

Thibault, S.

Thoen, E. R.

E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Tjin, S. C.

Tjörnhammar, S.

Tobin, K. E.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Townsend, P. D.

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

Tropper, A. C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

Tsuchimoto, H.

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

Tsuchiya, T.

M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
[Crossref]

Turunen, J.

M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Thermal properties of thin Al2O3 films and their barrier layer effect on thermo-optic properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 542, 257–262 (2013).
[Crossref]

Unal, B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Uomi, K.

M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
[Crossref]

Usami, M.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 23(6), 815–821 (1987).
[Crossref]

Ushirokawa, A.

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

Utaka, K.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 23(6), 815–821 (1987).
[Crossref]

Vainos, N.

Vainos, N. A.

Valle, G. D.

van Dalfsen, K.

van Dam, C.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36(15), 3338–3441 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

van den Hoven, G. N.

G. N. van den Hoven, J. A. van der Elsken, A. Polman, C. van Dam, K. W. M. van Uffelen, and M. K. Smit, “Absorption and emission cross sections of Er3+ in Al2O3 waveguides,” Appl. Opt. 36(15), 3338–3441 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

van der Elsken, J. A.

van der Laan, C. J.

M. K. Smit, G. A. Acket, and C. J. van der Laan, “Al2O3 films for integrated optics,” Thin Solid Films 138(2), 171–181 (1986).
[Crossref]

van der Werf, K. O.

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

van Etten, W.

van Uffelen, J. W. M.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

van Uffelen, K. W. M.

van Weerden, H. J.

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36(9), 1089–1097 (2000).
[Crossref]

van Wolferen, H. A. G. M.

Vasiliev, S. A.

D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
[Crossref]

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Vázquez-Córdova, S. A.

Veasey, D. L.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Verma, V. B.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Vermeulen, D.

Verpoorte, J.

Vilenchik, Y.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Villanueva, G. E.

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vossler, G. L.

Wang, D. S.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Wang, Q.

Warburton, T. J.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Watts,

Watts, M. R.

N. X. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-mu m emission on silicon chips: monolithically integrated Holmium lasers,” Opt. Express 26(3), 2220–2230 (2018).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25(12), 13705–13713 (2017).
[Crossref] [PubMed]

N. X. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42(9), 1772–1775 (2017).
[Crossref] [PubMed]

N. Li, P. Purnawirman, Z. Su, E. Salih Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
[Crossref] [PubMed]

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

Z. Su, N. Li, E. Salih Magden, M. Byrd, P. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41(24), 5708–5711 (2016).
[Crossref] [PubMed]

G. Singh, P. Purnawirman, J. D. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities,” Opt. Lett. 41(6), 1189–1192 (2016).
[Crossref] [PubMed]

E. S. Hosseini, J. D. B. Purnawirman, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

J. D. B. Bradley, E. S. Hosseini, Z. Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
[Crossref] [PubMed]

Weber, H. P.

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18(11), 497–499 (1971).
[Crossref]

Weng, M. T.

C. J. Wu, B. H. Chu, and M. T. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector,” J. Electromagn. Waves Appl. 23(1), 129–138 (2009).
[Crossref]

Werner, R.

J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, and A. Forchel, “DFB laser diodes in the wavelength range from 760 nm to 2.5 µm,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60(14), 3243–3247 (2004).
[Crossref] [PubMed]

Wessel, R.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

Wilke, G. D.

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111(3−4), 263–268 (1994).
[Crossref]

Wilkinson, J. S.

A. Z. Subramaniam, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photonics Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, J. S. Wilkinson, and A. A. Anderson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B 21(8), 1452–1462 (2004).
[Crossref]

Williams, R. J.

Winick, K. A.

Withford, M. J.

Wörhoff, K.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

L. Agazzi, K. Wörhoff, A. Kahn, M. Fechner, G. Huber, and M. Pollnau, “Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide,” J. Opt. Soc. Am. B 30(3), 663–677 (2013).
[Crossref]

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

F. Ay, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Focused-ion-beam nano-structuring of Al2O3 dielectric layers for photonic applications,” J. Micromech. Microeng. 22(10), 105008 (2012).
[Crossref]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, “Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers,” Appl. Phys. Lett. 100(1), 011109 (2012).
[Crossref]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

E. H. Bernhardi, Q. Lu, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding 106,” Photon. Nanostructures 9(3), 225–234 (2011).
[Crossref]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010).
[Crossref]

E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34(18), 2718–2720 (2009).
[PubMed]

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
[Crossref] [PubMed]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

Wu, C. J.

C. J. Wu, B. H. Chu, and M. T. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector,” J. Electromagn. Waves Appl. 23(1), 129–138 (2009).
[Crossref]

Wyon, C.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

Xie, S.

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photonics Technol. Lett. 18(23), 2493–2495 (2006).
[Crossref]

Xin, M.

Xu, B.

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Yan, P.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Yang, J.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

C. Grivas, J. Yang, M. B. J. Diemeer, A. Driessen, and M. Pollnau, “Continuous-wave Nd-doped polymer lasers,” Opt. Lett. 35(12), 1983–1985 (2010).
[Crossref] [PubMed]

Yao, J.

Yao, J. P.

Y. T. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron. 44(10), 938–945 (2008).
[Crossref]

Yariv, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Y. A. C. Livanos, A. Katzir, and A. Yariv, “Fabrication of grating structures with variable period,” Opt. Commun. 20(1), 179–182 (1977).
[Crossref]

A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Yau, T. H.

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36(9), 1089–1097 (2000).
[Crossref]

Yeom, D. I.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

Yliniemi, S.

Yong, Y. S.

Young, M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski, “Microchip lasers,” Linc. Lab. J. 3(3), 427–446 (1990).

Zhang, H.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Zhang, L.

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

Zhang, Y.

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photonics Technol. Lett. 18(23), 2493–2495 (2006).
[Crossref]

Zhao, C. Z.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46(3), 103–110 (2013).
[Crossref]

Zhou, P.

P. Zhou and G. S. Lee, “Chirped grating λ/4 shifted DFB laser with uniform longitudinal field distribution,” Electron. Lett. 26(20), 1660–1661 (1990).
[Crossref]

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett. 56(15), 1400–1402 (1990).
[Crossref]

Zhou, S.

Zhuang, L.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Adv. Mater. (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

AIP Adv. (1)

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D. I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (6)

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300−550 K and their effects on the 1.6 µm laser transition,” Appl. Phys. B 91(2), 249–256 (2008).
[Crossref]

J. Yang, K. van Dalfsen, K. Wörhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101(1–2), 119–127 (2010).
[Crossref]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73(5−6), 439–442 (2001).
[Crossref]

J. D. B. Bradley, F. Ay, K. Wörhoff, and M. Pollnau, “Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching,” Appl. Phys. B 89(2–3), 311–318 (2007).
[Crossref]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75(1), 15–17 (2002).
[Crossref]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Appl. Phys. Lett. (13)

G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett. 89(23), 231115 (2006).
[Crossref]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18(9), 395–396 (1971).
[Crossref]

I. P. Kaminov, H. P. Weber, and E. A. Chandross, “Poly(methyl methacrylate) dye laser with internal diffraction grating resonator,” Appl. Phys. Lett. 18(11), 497–499 (1971).
[Crossref]

C. B. E. Gawith, A. Fu, T. Bhutta, P. Hua, D. P. Shepherd, E. R. Taylor, P. G. R. Smith, D. Milanese, and M. Ferraris, “Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass,” Appl. Phys. Lett. 81(19), 3522–3524 (2002).
[Crossref]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, “Photoluminescence characterization of Er-implanted Al2O3 films,” Appl. Phys. Lett. 62(24), 3065–3067 (1993).
[Crossref]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 82(10), 1515–1517 (2003).
[Crossref]

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett. 56(15), 1400–1402 (1990).
[Crossref]

L. Agazzi, E. H. Bernhardi, K. Wörhoff, and M. Pollnau, “Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers,” Appl. Phys. Lett. 100(1), 011109 (2012).
[Crossref]

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[Crossref]

N. Li, Z. Su, E. S. Purnawirman, E. Salih Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110(21), 211105 (2017).
[Crossref] [PubMed]

C. R. Phys. (1)

M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Electron. Lett. (10)

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

H. Hillmer, A. Grabmeier, S. Hansmann, and H. Burkhard, “Continuously distributed phase shifts in chirped DFB lasers using bent waveguides,” Electron. Lett. 30(18), 1483–1484 (1994).
[Crossref]

T. Kitagawa, F. Bilodeau, B. Malo, S. Thériault, J. Albert, D. C. Jihnson, K. O. Hill, K. Hattori, and Y. Hibino, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994).
[Crossref]

G. Jose, S. Taccheo, G. Sorbello, D. Migliorati, V. Foglietti, E. Cianci, S. Jiang, N. Peyghambarian, and P. Laporta, “Multiwavelength waveguide laser array in C-band,” Electron. Lett. 38(21), 1275–1276 (2002).
[Crossref]

G. Sorbello, S. Taccheo, P. Laporta, O. Svelto, E. Cianci, V. Foglietti, S. Jiang, and N. Peyghambarian, “Singlemode Er:Yb waveguide laser array at 1.5 µm,” Electron. Lett. 37(16), 1014–1015 (2001).
[Crossref]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped TmYAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

P. J. Chandler, S. J. Field, D. C. Hanna, D. P. Shepherd, P. D. Townsend, A. C. Tropper, and L. Zhang, “Ion-implated Nd:YAG planar waveguide laser,” Electron. Lett. 25(15), 985–986 (1989).
[Crossref]

P. Zhou and G. S. Lee, “Chirped grating λ/4 shifted DFB laser with uniform longitudinal field distribution,” Electron. Lett. 26(20), 1660–1661 (1990).
[Crossref]

K. Tada, Y. Nakano, and A. Ushirokawa, “Proposal of a distributed feedback laser with nonuniform stripe width for complete single-mode oscillation,” Electron. Lett. 20(2), 82–84 (1984).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

IEEE J. Quantum Electron. (14)

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 23(6), 815–821 (1987).
[Crossref]

H. Soda and H. Imai, “Analysis of the spectrum behavior below the threshold in DFB lasers,” IEEE J. Quantum Electron. 22(5), 637–641 (1986).
[Crossref]

M. M. Okai, T. Tsuchiya, K. Uomi, N. Chinone, and T. Harada, “Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth,” IEEE J. Quantum Electron. 27(6), 1767–1772 (1991).
[Crossref]

A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. 13(4), 296–304 (1977).
[Crossref]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[Crossref]

M. Pollnau, “Analysis of heat generation and thermal lensing in erbium 3-µm lasers,” IEEE J. Quantum Electron. 39(2), 350–357 (2003).
[Crossref]

Y. T. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron. 44(10), 938–945 (2008).
[Crossref]

J. J. Mackenzie, C. Li, and D. P. Shepherd, “Multi-Watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003).
[Crossref]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C. Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39(3), 501–507 (2003).
[Crossref]

S. Musa, H. J. van Weerden, T. H. Yau, and P. V. Lambeck, “Characteristics of Er-doped Al2O3 thin films deposited by reactive co-sputtering,” IEEE J. Quantum Electron. 36(9), 1089–1097 (2000).
[Crossref]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009).
[Crossref]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (7)

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron. 17(3), 609–616 (2011).
[Crossref]

M. Pollnau, “Rare-earth-ion-doped channel waveguide lasers on silicon,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602512 (2015).
[Crossref]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[Crossref]

M. Eichhorn and M. Pollnau, “Spectroscopic foundations of lasers: Spontaneous emission into a resonator mode,” IEEE J. Sel. Top. Quantum Electron. 21(1), 9000216 (2015).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6(1), 101–113 (2000).
[Crossref]

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 3(2), 541–546 (1997).
[Crossref]

IEEE Photonics J. (1)

N. X. Li, N.A. Purnawirman, G. Singh, E. S. Magden, Z. Su, N. Singh, M. Moresco, G. Leake, J. D. B. Bradley, and M. R. Watts, “Reliable integrated photonic light sources using curved Al2O3:Er3+ distributed feedback lasers,” IEEE Photonics J. 9(4), 1504708 (2017).

IEEE Photonics Technol. Lett. (12)

J. Sun, Y. Dai, Y. Zhang, X. Chen, and S. Xie, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photonics Technol. Lett. 18(23), 2493–2495 (2006).
[Crossref]

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-branch surface-etched distributed bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

G. E. Villanueva, P. Pérez-Millán, J. Palací, J. L. Cruz, M. V. Andrés, and J. Martí, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photonics Technol. Lett. 22(4), 254–256 (2010).
[Crossref]

E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photonics Technol. Lett. 12(2), 149–151 (2000).
[Crossref]

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

A. Z. Subramaniam, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photonics Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathé, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber optic tunable filter based on intra-core Bragg grating and electrically resistive coating,” IEEE Photonics Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

D. M. Costantini, H. G. Limberger, R. P. Salathé, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period fiber grating,” IEEE Photonics Technol. Lett. 11(11), 1458–1460 (1999).
[Crossref]

M. R. H. Khan, E. H. Bernhardi, D. A. I. Marpaung, M. Burla, R. M. de Ridder, K. Wörhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photonics Technol. Lett. 24(16), 1431–1433 (2012).
[Crossref]

J. D. B. Bradley, R. Stoffer, A. Bakker, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ zero-loss optical amplifier and power splitter with 40-nm bandwidth,” IEEE Photonics Technol. Lett. 22(5), 278–280 (2010).
[Crossref]

G. A. Ball, W. W. Morey, and W. H. Glenn, “Standing-wave monomode erbium fiber laser,” IEEE Photonics Technol. Lett. 3(7), 613–615 (1991).
[Crossref]

S. Blaize, L. Bastard, C. Cassagnetes, and J. E. Broquin, “Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate,” IEEE Photonics Technol. Lett. 15(4), 516–518 (2003).
[Crossref]

IEICE Trans. Electron. (1)

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88–C(5), 990–997 (2005).
[Crossref]

J. Appl. Phys. (3)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref] [PubMed]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996).
[Crossref]

J. Electromagn. Waves Appl. (1)

C. J. Wu, B. H. Chu, and M. T. Weng, “Analysis of optical reflection in a chirped distributed Bragg reflector,” J. Electromagn. Waves Appl. 23(1), 129–138 (2009).
[Crossref]

J. Lightwave Technol. (5)

J. Micromech. Microeng. (1)

F. Ay, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Focused-ion-beam nano-structuring of Al2O3 dielectric layers for photonic applications,” J. Micromech. Microeng. 22(10), 105008 (2012).
[Crossref]

J. Non-Cryst. Solids (2)

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263(1−4), 369–381 (2000).
[Crossref]

P. Loiko, N. Ismail, J. D. B. Bradley, M. Götelid, and M. Pollnau, “Refractive-index variation with rare-earth incorporation in amorphous Al2O3 thin films,” J. Non-Cryst. Solids 476, 95–99 (2017).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. C (2)

P. Loiko and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120(46), 26480–26489 (2016).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117(13), 6759–6776 (2013).
[Crossref]

Laser Photonics Rev. (2)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

E. H. Bernhardi, K. O. van der Werf, A. J. F. Hollink, K. Wörhoff, R. M. de Ridder, V. Subramaniam, and M. Pollnau, “Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser,” Laser Photonics Rev. 7(4), 589–598 (2013).
[Crossref]

Laser Phys. Lett. (3)

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

J. Yang, M. B. J. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010).
[Crossref]

Linc. Lab. J. (1)

J. J. Zayhowski, “Microchip lasers,” Linc. Lab. J. 3(3), 427–446 (1990).

Nat. Photonics (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Commun. (6)

S. A. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, “Auger upconversion losses in Nd-doped laser glasses,” Opt. Commun. 111(3−4), 263–268 (1994).
[Crossref]

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147(1−3), 203–211 (1998).
[Crossref]

Y. A. C. Livanos, A. Katzir, and A. Yariv, “Fabrication of grating structures with variable period,” Opt. Commun. 20(1), 179–182 (1977).
[Crossref]

S. R. Chinn and P. L. Kelley, “Analysis of the transmission, reflection and noise properties of distributed feedback laser amplifiers,” Opt. Commun. 10(2), 123–126 (1974).
[Crossref]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 µm Tm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5−6), 491–497 (1995).
[Crossref]

Opt. Eng. (1)

L. Bastard, S. Blaize, and J. E. Broquin, “Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications,” Opt. Eng. 42(10), 2800–2804 (2003).
[Crossref]

Opt. Express (27)

J. D. B. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[Crossref] [PubMed]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22(21), 25993–26004 (2014).
[Crossref] [PubMed]

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express 18(26), 27703–27711 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18(25), 26107–26112 (2010).
[Crossref] [PubMed]

D. Geskus, E. H. Bernhardi, K. van Dalfsen, S. Aravazhi, and M. Pollnau, “Highly efficient Yb3+-doped channel waveguide laser at 981 nm,” Opt. Express 21(11), 13773–13778 (2013).
[Crossref] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, and F. Chen, “Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene,” Opt. Express 22(8), 9101–9106 (2014).
[Crossref] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
[Crossref] [PubMed]

F. M. Bain, A. A. Lagatsky, S. V. Kurilchick, V. E. Kisel, S. A. Guretsky, A. M. Luginets, N. A. Kalanda, I. M. Kolesova, N. V. Kuleshov, W. Sibbett, and C. T. A. Brown, “Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser,” Opt. Express 17(3), 1666–1670 (2009).
[Crossref] [PubMed]

C. Grivas, D. Shepherd, T. May-Smith, R. Eason, and M. Pollnau, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13(1), 210–215 (2005).
[Crossref] [PubMed]

S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO4)2 waveguide laser,