Abstract

Graphene is an ideal substitute for indium tin oxide electrode in organic photovoltaic (OPV) devices, due to its outstanding electrical, optical, chemical and mechanical properties. However, the graphene electrode suffers from work function mismatch with common hole injection layer and intrinsic hydrophobic property. Here, CuxO is proposed to modify monolayer graphene in order to increase the work function of graphene (from 4.45 to 4.76 eV) and decrease the water contact angle (from 88° to 59°). Then, the OPV devices based on the CuxO modified graphene anode are fabricated successfully, and power conversion efficiency (PCE) is enhanced from 4.00 ± 0.44 to 5.23 ± 0.47%. Furthermore, the ternary blended polymer solar cell is fabricated by adding a small molecular material 1, 2, 5-thiadiazole-fused 12-ring polyaromatic hydrocarbon into the active layer, and the PCE is improved to 6.03 ± 0.53%, due to the enhanced absorption and depressed recombination inside the active layer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based functional materials for organic solar cells [Invited]

Zhe Pan, Huili Gu, Meng-Ting Wu, Yongxi Li, and Yu Chen
Opt. Mater. Express 2(6) 814-824 (2012)

Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells

Yoon Ho Huh, In-Gon Bae, Hong Goo Jeon, and Byoungchoo Park
Opt. Express 24(22) A1321-A1335 (2016)

Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods

Ming-Yi Lin, Shang-Hsuan Wu, Li-Jen Hsiao, Widhya Budiawan, Karunakara Moorthy Boopathi, Wei-Chen Tu, Yia-Chung Chang, and Chih-Wei Chu
Opt. Express 24(16) 17910-17915 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
    [Crossref]
  2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
    [Crossref] [PubMed]
  3. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
    [Crossref]
  4. V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
    [Crossref] [PubMed]
  5. H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
    [Crossref] [PubMed]
  6. H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
    [Crossref]
  7. A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
    [Crossref]
  8. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
    [Crossref]
  9. Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
    [Crossref]
  10. W. Zhao, P. Tan, J. Zhang, and J. Liu, “Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid,” Phys. Rev. B 82(24), 245423 (2010).
    [Crossref]
  11. V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
    [Crossref]
  12. E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
    [Crossref]
  13. N. A. Cordero and J. A. Alonso, “The interaction of sulfuric acid with graphene and formation of adsorbed crystals,” Nanotechnology 18(48), 485705 (2007).
    [Crossref]
  14. G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
    [Crossref]
  15. Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
    [Crossref]
  16. K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
    [Crossref] [PubMed]
  17. F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
    [Crossref] [PubMed]
  18. M. H. Kang, W. I. Milne, and M. T. Cole, “Doping stability and opto-electronic performance of chemical vapour deposited graphene on transparent flexible substrates,” IET Circ. Device. Syst. 9(1), 39–45 (2015).
    [Crossref]
  19. K. C. Kwon, B. J. Kim, J. L. Lee, and S. Y. Kim, “Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 253–259 (2012).
    [Crossref]
  20. K. C. Kwon, K. S. Choi, C. Kim, and S. Y. Kim, “Effect of transition‐metal chlorides on graphene properties,” Phys. Status Solidi 211(8), 1794–1800 (2015).
    [Crossref]
  21. M. H. Kang, W. I. Milne, and M. T. Cole, “Temporal stability of metal-chloride-doped chemical-vapour-deposited graphene,” ChemPhysChem 17(16), 2545–2550 (2016).
    [Crossref] [PubMed]
  22. I. Y. Y. Bu, Y. S. Fu, J. F. Lia, and T. F. Guo, “Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells,” RSC Advances 7(74), 46651–46656 (2017).
    [Crossref]
  23. A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
    [Crossref] [PubMed]
  24. G. Avgouropoulos and T. Ioannides, “Effect of synthesis parameters on catalytic properties of CuO-CeO2,” Appl. Catal. B 67(1–2), 1–11 (2006).
    [Crossref]
  25. L. Kundakovic and M. F. Stephanopoulos, “Reduction characteristics of copper oxide in cerium and zirconium oxide systems,” Appl. Catal. A 171(1), 13–29 (1998).
    [Crossref]
  26. H. Park, Y. Shi, and J. Kong, “Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells,” Nanoscale 5(19), 8934–8939 (2013).
    [Crossref] [PubMed]

2017 (2)

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

I. Y. Y. Bu, Y. S. Fu, J. F. Lia, and T. F. Guo, “Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells,” RSC Advances 7(74), 46651–46656 (2017).
[Crossref]

2016 (4)

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

M. H. Kang, W. I. Milne, and M. T. Cole, “Temporal stability of metal-chloride-doped chemical-vapour-deposited graphene,” ChemPhysChem 17(16), 2545–2550 (2016).
[Crossref] [PubMed]

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
[Crossref]

2015 (3)

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

M. H. Kang, W. I. Milne, and M. T. Cole, “Doping stability and opto-electronic performance of chemical vapour deposited graphene on transparent flexible substrates,” IET Circ. Device. Syst. 9(1), 39–45 (2015).
[Crossref]

K. C. Kwon, K. S. Choi, C. Kim, and S. Y. Kim, “Effect of transition‐metal chlorides on graphene properties,” Phys. Status Solidi 211(8), 1794–1800 (2015).
[Crossref]

2014 (1)

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

2013 (4)

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

H. Park, Y. Shi, and J. Kong, “Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells,” Nanoscale 5(19), 8934–8939 (2013).
[Crossref] [PubMed]

2012 (1)

K. C. Kwon, B. J. Kim, J. L. Lee, and S. Y. Kim, “Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 253–259 (2012).
[Crossref]

2010 (4)

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

W. Zhao, P. Tan, J. Zhang, and J. Liu, “Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid,” Phys. Rev. B 82(24), 245423 (2010).
[Crossref]

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

2009 (2)

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

2008 (1)

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

2007 (1)

N. A. Cordero and J. A. Alonso, “The interaction of sulfuric acid with graphene and formation of adsorbed crystals,” Nanotechnology 18(48), 485705 (2007).
[Crossref]

2006 (1)

G. Avgouropoulos and T. Ioannides, “Effect of synthesis parameters on catalytic properties of CuO-CeO2,” Appl. Catal. B 67(1–2), 1–11 (2006).
[Crossref]

2005 (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

1998 (1)

L. Kundakovic and M. F. Stephanopoulos, “Reduction characteristics of copper oxide in cerium and zirconium oxide systems,” Appl. Catal. A 171(1), 13–29 (1998).
[Crossref]

Allen, M. J.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

Alonso, J. A.

N. A. Cordero and J. A. Alonso, “The interaction of sulfuric acid with graphene and formation of adsorbed crystals,” Nanotechnology 18(48), 485705 (2007).
[Crossref]

Aluru, N. R.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Ashraf, A.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Avgouropoulos, G.

G. Avgouropoulos and T. Ioannides, “Effect of synthesis parameters on catalytic properties of CuO-CeO2,” Appl. Catal. B 67(1–2), 1–11 (2006).
[Crossref]

Bao, Z.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

Becerril, H. A.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

Bi, Y. G.

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

Biswas, C.

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Booth, T. J.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Bouleghlimat, E.

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

Bu, I. Y. Y.

I. Y. Y. Bu, Y. S. Fu, J. F. Lia, and T. F. Guo, “Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells,” RSC Advances 7(74), 46651–46656 (2017).
[Crossref]

Cao, K.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Chae, S. J.

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Chen, L. M.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

Chen, S.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Chen, X.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Chen, Y.

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

Choe, M.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Choi, J. Y.

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Choi, K. S.

K. C. Kwon, K. S. Choi, C. Kim, and S. Y. Kim, “Effect of transition‐metal chlorides on graphene properties,” Phys. Status Solidi 211(8), 1794–1800 (2015).
[Crossref]

Cole, M. T.

M. H. Kang, W. I. Milne, and M. T. Cole, “Temporal stability of metal-chloride-doped chemical-vapour-deposited graphene,” ChemPhysChem 17(16), 2545–2550 (2016).
[Crossref] [PubMed]

M. H. Kang, W. I. Milne, and M. T. Cole, “Doping stability and opto-electronic performance of chemical vapour deposited graphene on transparent flexible substrates,” IET Circ. Device. Syst. 9(1), 39–45 (2015).
[Crossref]

Cordero, N. A.

N. A. Cordero and J. A. Alonso, “The interaction of sulfuric acid with graphene and formation of adsorbed crystals,” Nanotechnology 18(48), 485705 (2007).
[Crossref]

Dai, L.

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Davies, P. R.

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

Davies, R. J.

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

Dong, F. X.

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

Feng, J.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

Fu, Y. S.

I. Y. Y. Bu, Y. S. Fu, J. F. Lia, and T. F. Guo, “Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells,” RSC Advances 7(74), 46651–46656 (2017).
[Crossref]

Gao, W.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Gun’ko, V. M.

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

Günes, F.

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Guo, T. F.

I. Y. Y. Bu, Y. S. Fu, J. F. Lia, and T. F. Guo, “Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells,” RSC Advances 7(74), 46651–46656 (2017).
[Crossref]

Haasch, R. T.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Han, G. H.

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Hofmann, S.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Howarth, R.

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

Huang, W.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Ioannides, T.

G. Avgouropoulos and T. Ioannides, “Effect of synthesis parameters on catalytic properties of CuO-CeO2,” Appl. Catal. B 67(1–2), 1–11 (2006).
[Crossref]

Jiang, D.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Jing, Y.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Jo, G.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Kahng, Y. H.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Kaner, R. B.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

Kang, M. H.

M. H. Kang, W. I. Milne, and M. T. Cole, “Temporal stability of metal-chloride-doped chemical-vapour-deposited graphene,” ChemPhysChem 17(16), 2545–2550 (2016).
[Crossref] [PubMed]

M. H. Kang, W. I. Milne, and M. T. Cole, “Doping stability and opto-electronic performance of chemical vapour deposited graphene on transparent flexible substrates,” IET Circ. Device. Syst. 9(1), 39–45 (2015).
[Crossref]

Khotkevich, V. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Kidambi, P. R.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Kim, B. J.

K. C. Kwon, B. J. Kim, J. L. Lee, and S. Y. Kim, “Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 253–259 (2012).
[Crossref]

Kim, C.

K. C. Kwon, K. S. Choi, C. Kim, and S. Y. Kim, “Effect of transition‐metal chlorides on graphene properties,” Phys. Status Solidi 211(8), 1794–1800 (2015).
[Crossref]

Kim, D. Y.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Kim, E. S.

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Kim, K. K.

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

Kim, S. Y.

K. C. Kwon, K. S. Choi, C. Kim, and S. Y. Kim, “Effect of transition‐metal chlorides on graphene properties,” Phys. Status Solidi 211(8), 1794–1800 (2015).
[Crossref]

K. C. Kwon, B. J. Kim, J. L. Lee, and S. Y. Kim, “Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 253–259 (2012).
[Crossref]

Kim, T. S.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Kling, J.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Kong, J.

H. Park, Y. Shi, and J. Kong, “Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells,” Nanoscale 5(19), 8934–8939 (2013).
[Crossref] [PubMed]

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

Kulhavy, J.

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

Kundakovic, L.

L. Kundakovic and M. F. Stephanopoulos, “Reduction characteristics of copper oxide in cerium and zirconium oxide systems,” Appl. Catal. A 171(1), 13–29 (1998).
[Crossref]

Kuruvila, A.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Kwon, K. C.

K. C. Kwon, K. S. Choi, C. Kim, and S. Y. Kim, “Effect of transition‐metal chlorides on graphene properties,” Phys. Status Solidi 211(8), 1794–1800 (2015).
[Crossref]

K. C. Kwon, B. J. Kim, J. L. Lee, and S. Y. Kim, “Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 253–259 (2012).
[Crossref]

Laskarakis, A.

E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
[Crossref]

Lee, J. L.

K. C. Kwon, B. J. Kim, J. L. Lee, and S. Y. Kim, “Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 253–259 (2012).
[Crossref]

Lee, S.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Lee, T.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Lee, Y. H.

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Li, L. J.

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

Li, Y. F.

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

Lia, J. F.

I. Y. Y. Bu, Y. S. Fu, J. F. Lia, and T. F. Guo, “Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells,” RSC Advances 7(74), 46651–46656 (2017).
[Crossref]

Liu, J.

W. Zhao, P. Tan, J. Zhang, and J. Liu, “Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid,” Phys. Rev. B 82(24), 245423 (2010).
[Crossref]

Liu, S.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Liu, Z.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

Logothetidis, S.

E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
[Crossref]

Loh, K. P.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Lu, X.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Luo, J.

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Mai, J.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Meng, H.

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Meyer, J.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Mikhalovsky, S. V.

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

Milne, W. I.

M. H. Kang, W. I. Milne, and M. T. Cole, “Temporal stability of metal-chloride-doped chemical-vapour-deposited graphene,” ChemPhysChem 17(16), 2545–2550 (2016).
[Crossref] [PubMed]

M. H. Kang, W. I. Milne, and M. T. Cole, “Doping stability and opto-electronic performance of chemical vapour deposited graphene on transparent flexible substrates,” IET Circ. Device. Syst. 9(1), 39–45 (2015).
[Crossref]

Morgan, D. J.

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

Morozov, S. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Na, S. I.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Nam, S.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Nelson, K.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

Niu, Q.

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Oh, S. H.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Papas, D.

E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
[Crossref]

Park, H.

H. Park, Y. Shi, and J. Kong, “Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells,” Nanoscale 5(19), 8934–8939 (2013).
[Crossref] [PubMed]

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

Park, W.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Pechlivani, E. M.

E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
[Crossref]

Peumans, P.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

Prykhod’ko, G. P.

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

Qin, G.

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Reina, A.

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

Robertson, J.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Schedin, F.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

Shang, W.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Shi, Y.

H. Park, Y. Shi, and J. Kong, “Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells,” Nanoscale 5(19), 8934–8939 (2013).
[Crossref] [PubMed]

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

Shi, Z.

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Shin, H. J.

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Stephanopoulos, M. F.

L. Kundakovic and M. F. Stephanopoulos, “Reduction characteristics of copper oxide in cerium and zirconium oxide systems,” Appl. Catal. A 171(1), 13–29 (1998).
[Crossref]

Sun, H. B.

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

Sun, T.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Tan, P.

W. Zhao, P. Tan, J. Zhang, and J. Liu, “Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid,” Phys. Rev. B 82(24), 245423 (2010).
[Crossref]

Tung, V. C.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

Turov, A. V.

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

Turov, V. V.

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

Wagner, J. B.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Wang, G.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Wang, L.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Wang, M.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Wang, M. C.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Wang, W.

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Wang, Y.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Wassei, J. K.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

Whitby, R. L. D.

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

Wu, H.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Wu, J.

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

Wu, Y.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Yan, L.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Yang, Y.

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

Yong, K.

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Yoon, J.

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Yu, W. W.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Yue, Y. Y.

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

Zachariadis, A.

E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
[Crossref]

Zhang, J.

W. Zhao, P. Tan, J. Zhang, and J. Liu, “Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid,” Phys. Rev. B 82(24), 245423 (2010).
[Crossref]

Zhang, T.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Zhang, X.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Zhang, Y.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Zhao, B.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Zhao, J.

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

Zhao, W.

W. Zhao, P. Tan, J. Zhang, and J. Liu, “Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid,” Phys. Rev. B 82(24), 245423 (2010).
[Crossref]

Zhong, Y.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Zhou, Y.

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Zhu, F.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Wu, X. Zhang, Y. Zhang, L. Yan, W. Gao, T. Zhang, Y. Wang, J. Zhao, and W. W. Yu, “Colloidal PbSe solar cells with molybdenum oxide modified graphene anodes,” ACS Appl. Mater. Interfaces 7(38), 21082–21088 (2015).
[Crossref] [PubMed]

ACS Nano (1)

F. Güneş, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. Meng, J. Luo, W. Wang, Z. Shi, Q. Niu, L. Dai, and G. Qin, “Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Appl. Catal. A (1)

L. Kundakovic and M. F. Stephanopoulos, “Reduction characteristics of copper oxide in cerium and zirconium oxide systems,” Appl. Catal. A 171(1), 13–29 (1998).
[Crossref]

Appl. Catal. B (1)

G. Avgouropoulos and T. Ioannides, “Effect of synthesis parameters on catalytic properties of CuO-CeO2,” Appl. Catal. B 67(1–2), 1–11 (2006).
[Crossref]

Appl. Phys. Lett. (4)

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett. 92(26), 263302 (2008).
[Crossref]

G. Jo, S. I. Na, S. H. Oh, S. Lee, T. S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D. Y. Kim, Y. H. Kahng, and T. Lee, “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Appl. Phys. Lett. 97(21), 213301 (2010).
[Crossref]

Y. Zhou, M. Wang, L. Wang, S. Liu, S. Chen, K. Cao, W. Shang, J. Mai, B. Zhao, J. Feng, X. Lu, and W. Huang, “Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells,” Appl. Phys. Lett. 111(11), 113302 (2017).
[Crossref]

Carbon (2)

V. M. Gun’ko, V. V. Turov, R. L. D. Whitby, G. P. Prykhod’ko, A. V. Turov, and S. V. Mikhalovsky, “Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1 H NMR,” Carbon 57, 191–201 (2013).
[Crossref]

E. Bouleghlimat, P. R. Davies, R. J. Davies, R. Howarth, J. Kulhavy, and D. J. Morgan, “The effect of acid treatment on the surface chemistry and topography of graphite,” Carbon 61, 124–133 (2013).
[Crossref]

ChemPhysChem (1)

M. H. Kang, W. I. Milne, and M. T. Cole, “Temporal stability of metal-chloride-doped chemical-vapour-deposited graphene,” ChemPhysChem 17(16), 2545–2550 (2016).
[Crossref] [PubMed]

IET Circ. Device. Syst. (1)

M. H. Kang, W. I. Milne, and M. T. Cole, “Doping stability and opto-electronic performance of chemical vapour deposited graphene on transparent flexible substrates,” IET Circ. Device. Syst. 9(1), 39–45 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

K. C. Kwon, B. J. Kim, J. L. Lee, and S. Y. Kim, “Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(2), 253–259 (2012).
[Crossref]

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6940–6945 (2014).
[Crossref]

Mater. today proceedings (1)

E. M. Pechlivani, D. Papas, A. Zachariadis, A. Laskarakis, and S. Logothetidis, “Organic photovoltaic cells based on graphene interfacial anode electrodes,” Mater. today proceedings 3 (3), 788–795 (2016).
[Crossref]

Nano Lett. (2)

V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, “Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors,” Nano Lett. 9(5), 1949–1955 (2009).
[Crossref] [PubMed]

A. Ashraf, Y. Wu, M. C. Wang, K. Yong, T. Sun, Y. Jing, R. T. Haasch, N. R. Aluru, and S. Nam, “Doping-induced tunable wettability and adhesion of graphene,” Nano Lett. 16(7), 4708–4712 (2016).
[Crossref] [PubMed]

Nanoscale (1)

H. Park, Y. Shi, and J. Kong, “Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells,” Nanoscale 5(19), 8934–8939 (2013).
[Crossref] [PubMed]

Nanotechnology (2)

N. A. Cordero and J. A. Alonso, “The interaction of sulfuric acid with graphene and formation of adsorbed crystals,” Nanotechnology 18(48), 485705 (2007).
[Crossref]

K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21(28), 285205 (2010).
[Crossref] [PubMed]

Org. Electron. (1)

Y. Chen, J. Feng, F. X. Dong, Y. F. Li, Y. G. Bi, Y. Y. Yue, and H. B. Sun, “A two-step thermal annealing and HNO3, doping treatment for graphene electrode and its application in small-molecule organic solar cells,” Org. Electron. 38, 35–41 (2016).
[Crossref]

Phys. Rev. B (1)

W. Zhao, P. Tan, J. Zhang, and J. Liu, “Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid,” Phys. Rev. B 82(24), 245423 (2010).
[Crossref]

Phys. Status Solidi (1)

K. C. Kwon, K. S. Choi, C. Kim, and S. Y. Kim, “Effect of transition‐metal chlorides on graphene properties,” Phys. Status Solidi 211(8), 1794–1800 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[Crossref] [PubMed]

RSC Advances (1)

I. Y. Y. Bu, Y. S. Fu, J. F. Lia, and T. F. Guo, “Large-area electrospray-deposited nanocrystalline CuXO hole transport layer for perovskite solar cells,” RSC Advances 7(74), 46651–46656 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Sheet resistance and (b) transmissivity curves of graphene modified with different thicknesses of CuxO.
Fig. 2
Fig. 2 Optical images of PEDOT:PSS on (a) 0.0, (b) 1.3, (c) 2.6 and 4.0-nm CuxO-covered graphene.
Fig. 3
Fig. 3 (a) Raman spectra of graphene modified with different thicknesses of CuxO, (b) G and (c) 2D peak distribution histogram extracted from Raman spectra. Inset: Contact angle of graphene.
Fig. 4
Fig. 4 (a) XPS; (b) Cu 2p XPS; and (c) magnified UPS spectra of graphene modified with different thicknesses of CuxO.
Fig. 5
Fig. 5 (a) Device structure of OPVs with graphene anode, (b) molecular structures of PCE-10, PC71BM and DNNBT-C12 and (c) energy levels of OPVs comprised of the graphene anode with and without CuxO modification.
Fig. 6
Fig. 6 Current-voltage characteristic curves for the OPVs under (a) AM 1.5G illumination and (b) dark conditions.
Fig. 7
Fig. 7 Current density-voltage characteristics under (a) AM 1.5G illumination and (b) dark conditions, (c) EQE and (d) photocurrent density-effective voltage curves for our OPVs.

Tables (2)

Tables Icon

Table 1 The photovoltaic characteristics with different thicknesses of CuxO to modify the graphene anode. The statistical data were obtained from 5 groups of devices.

Tables Icon

Table 2 The photovoltaic characteristics with different anodes. The statistical data came from 5 groups of devices.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2Cu+O3 Cu2O+O2
Cu2O+O3 2CuO+O2 .

Metrics