Abstract

With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn ‘on’ and ‘off’ radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

Thermal homeostasis using microstructured phase-change materials

Shao-Hua Wu, Mingkun Chen, Michael T. Barako, Vladan Jankovic, Philip W.C. Hon, Luke A. Sweatlock, and Michelle L. Povinelli
Optica 4(11) 1390-1396 (2017)

Effective, angle-independent radiative cooler based on one-dimensional photonic crystal

Huaxin Yuan, Chenying Yang, Xiaowen Zheng, Wen Mu, Zhen Wang, Wenjia Yuan, Yueguang Zhang, Chaonan Chen, Xu Liu, and Weidong Shen
Opt. Express 26(21) 27885-27893 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  2. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  3. A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
    [Crossref] [PubMed]
  4. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref] [PubMed]
  5. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  6. S. Fan and A. Raman, “Metamaterials for radiative sky cooling,” Natl. Sci. Rev. 5(2), 10–13 (2018).
    [Crossref]
  7. A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
    [Crossref] [PubMed]
  8. M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  9. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
    [Crossref] [PubMed]
  10. J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  11. N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).
  12. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).
  13. J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
    [Crossref]
  14. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).
  15. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
    [Crossref]
  16. T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
    [Crossref] [PubMed]
  17. S.-H. Wu and M. L. Povinelli, “Solar heating of GaAs nanowire solar cells,” Opt. Express 23(24), A1363–A1372 (2015).
    [Crossref] [PubMed]
  18. W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
    [Crossref]
  19. W. Li and S. Fan, “Nanophotonic Control of Thermal Radiation for Energy Applications,” Opt. Express 26(12), 15995–16021 (2018).
    [Crossref]
  20. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [Crossref] [PubMed]
  21. V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
    [Crossref] [PubMed]
  22. X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
    [Crossref]
  23. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
    [Crossref]
  24. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).
  25. S.-H. Wu, M. Chen, M. T. Barako, V. Jankovic, P. W. C. Hon, L. A. Sweatlock, and M. L. Povinelli, “Thermal homeostasis using microstructured phase-change materials,” Optica 4(11), 1390 (2017).
    [Crossref]
  26. D. M. Bierman, A. Lenert, M. A. Kats, Y. Zhou, S. Zhang, M. De La Ossa, S. Ramanathan, F. Capasso, and E. N. Wang, “Radiative thermal runaway due to negative differential thermal emission across a solid-solid phase transition,” http://arxiv.org/abs/1801.00376 (2017).
  27. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
    [Crossref]
  28. K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
    [Crossref]
  29. K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
    [Crossref] [PubMed]
  30. L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
    [Crossref] [PubMed]
  31. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  32. J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2thin film,” Opt. Mater. 54, 165–169 (2016).
    [Crossref]
  33. F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  34. G. V. Jorgenson and J. C. Lee, “Doped vanadium oxide for optical switching films,” Sol. Energy Mater. 14(3-5), 205–214 (1986).
    [Crossref]
  35. W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
    [Crossref]
  36. M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, “Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications,” Appl. Phys. Lett. 110(14), 141907 (2017).
    [Crossref]
  37. E. Palik Handbook of Optical Constants of Solids (1998).
  38. J.-Y. Jung, J. Y. Park, S. Han, A. S. Weling, and D. P. Neikirk, “Wavelength-selective infrared Salisbury screen absorber,” Appl. Opt. 53(11), 2431–2436 (2014).
    [Crossref] [PubMed]
  39. M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128(4-6), 307–314 (1996).
    [Crossref]
  40. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).
  41. “Weather Underground,” https://www.wunderground.com/personal-weather-station/dashboard?ID=KCASTANF2#history/s20170719/e20170719/mdaily .
  42. “Altitude and Azimuth of the Sun,” http://aa.usno.navy.mil/cgi-bin/aa_altazw.pl?form=1&body=10&year=2017&month=7&day=19&intv_mag=1&state=DC&place .

2018 (4)

S. Fan and A. Raman, “Metamaterials for radiative sky cooling,” Natl. Sci. Rev. 5(2), 10–13 (2018).
[Crossref]

W. Li and S. Fan, “Nanophotonic Control of Thermal Radiation for Energy Applications,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

2017 (8)

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, “Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications,” Appl. Phys. Lett. 110(14), 141907 (2017).
[Crossref]

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
[Crossref]

S.-H. Wu, M. Chen, M. T. Barako, V. Jankovic, P. W. C. Hon, L. A. Sweatlock, and M. L. Povinelli, “Thermal homeostasis using microstructured phase-change materials,” Optica 4(11), 1390 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

2016 (3)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

2015 (7)

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
[Crossref] [PubMed]

S.-H. Wu and M. L. Povinelli, “Solar heating of GaAs nanowire solar cells,” Opt. Express 23(24), A1363–A1372 (2015).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

2014 (5)

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

J.-Y. Jung, J. Y. Park, S. Han, A. S. Weling, and D. P. Neikirk, “Wavelength-selective infrared Salisbury screen absorber,” Appl. Opt. 53(11), 2431–2436 (2014).
[Crossref] [PubMed]

2013 (2)

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

2010 (1)

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

2006 (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

2002 (1)

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

1996 (1)

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128(4-6), 307–314 (1996).
[Crossref]

1986 (1)

G. V. Jorgenson and J. C. Lee, “Doped vanadium oxide for optical switching films,” Sol. Energy Mater. 14(3-5), 205–214 (1986).
[Crossref]

1981 (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

1959 (1)

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Adler-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Atwater, H. A.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Barako, M. T.

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Bernard, G. D.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Borel, C. C.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Boriskina, S. V.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Brar, V. W.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Burkhardt, W.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Cai, L.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Camino, F.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Catrysse, P. B.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Chen, G.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Chen, K.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Chen, M.

Chen, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Cheng, Z.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Cheng, Z.-Y.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Choi, M.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Christmann, T.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Cui, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Dietrich, M. K.

M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, “Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications,” Appl. Phys. Lett. 110(14), 141907 (2017).
[Crossref]

Ding, J.-C.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Du, K.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Du, K.-K.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Fan, S.

W. Li and S. Fan, “Nanophotonic Control of Thermal Radiation for Energy Applications,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

S. Fan and A. Raman, “Metamaterials for radiative sky cooling,” Natl. Sci. Rev. 5(2), 10–13 (2018).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Franke, S.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Gentle, A. R.

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

Ghosh, P.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Gibaud, A.

J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Granqvist, C. G.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Gu, M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Han, S.

Hjortsberg, A.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Hon, P. W. C.

Hossain, M. M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hsu, P. C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Huang, X.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Jang, M. S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Jankovic, V.

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jorgenson, G. V.

G. V. Jorgenson and J. C. Lee, “Doped vanadium oxide for optical switching films,” Sol. Energy Mater. 14(3-5), 205–214 (1986).
[Crossref]

Jung, J.-Y.

Jurado, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kana Kana, J. B.

J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Kim, L.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Kim, S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Klar, P. J.

M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, “Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications,” Appl. Phys. Lett. 110(14), 141907 (2017).
[Crossref]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Kou, J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kriegseis, W.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Kuhl, F.

M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, “Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications,” Appl. Phys. Lett. 110(14), 141907 (2017).
[Crossref]

Large, M. C. J.

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128(4-6), 307–314 (1996).
[Crossref]

Large, M. I.

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128(4-6), 307–314 (1996).
[Crossref]

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Lee, J. C.

G. V. Jorgenson and J. C. Lee, “Doped vanadium oxide for optical switching films,” Sol. Energy Mater. 14(3-5), 205–214 (1986).
[Crossref]

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Li, Q.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Li, W.

W. Li and S. Fan, “Nanophotonic Control of Thermal Radiation for Energy Applications,” Opt. Express 26(12), 15995–16021 (2018).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Liu, C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Liu, X.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
[Crossref]

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Loomis, J.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Lu, J.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Lu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Luo, H.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Lyu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Lyu, Y.-B.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Maaza, M.

J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

McKenzie, D. R.

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128(4-6), 307–314 (1996).
[Crossref]

Meister, D.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Meyer, B. K.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Minnich, A. J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Munday, J. N.

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Neikirk, D. P.

Niessner, W.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
[Crossref]

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

Pan, M.

Park, J. Y.

Peng, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Polity, A.

M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, “Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications,” Appl. Phys. Lett. 110(14), 141907 (2017).
[Crossref]

Povinelli, M. L.

Qiu, M.

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Qu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Raman, A.

S. Fan and A. Raman, “Metamaterials for radiative sky cooling,” Natl. Sci. Rev. 5(2), 10–13 (2018).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ramanathan, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Safi, T. S.

Schalch, D.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Scharmann, A.

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Sherrott, M. C.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Shettle, E. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Shi, N. N.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

Shi, Y.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

Song, A. Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Sweatlock, L. A.

S.-H. Wu, M. Chen, M. T. Barako, V. Jankovic, P. W. C. Hon, L. A. Sweatlock, and M. L. Povinelli, “Thermal homeostasis using microstructured phase-change materials,” Optica 4(11), 1390 (2017).
[Crossref]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Tian, J.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Tong, J. K.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Tsai, C. C.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Vignaud, G.

J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Wang, K. X.

Wehner, R.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

Weling, A. S.

Wu, S.-H.

Xie, J.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

Xu, Y.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Yu, N.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Zhu, L.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

ACS Photonics (3)

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Adv Sci (Weinh) (1)

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, “Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications,” Appl. Phys. Lett. 110(14), 141907 (2017).
[Crossref]

J. Appl. Phys. (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Laser Photonics Rev. (1)

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Light Sci. Appl. (1)

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Nano Lett. (2)

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Nanoscale (1)

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Natl. Sci. Rev. (1)

S. Fan and A. Raman, “Metamaterials for radiative sky cooling,” Natl. Sci. Rev. 5(2), 10–13 (2018).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

M. C. J. Large, D. R. McKenzie, and M. I. Large, “Incoherent reflection processes: a discrete approach,” Opt. Commun. 128(4-6), 307–314 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

J. B. Kana Kana, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally driven sign switch of static dielectric constant of VO2thin film,” Opt. Mater. 54, 165–169 (2016).
[Crossref]

Optica (3)

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. Lett. (1)

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Proc. SPIE (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, and E. P. Shettle, “MODTRAN5: 2006 update,” Proc. SPIE 6233, 62331F (2006).

Science (80-.). (3)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science (80-.). 353, 1019– 1023 (2016).

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science (80-.). 349, 298– 301 (2015).

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science (80-.). 355, 1062– 1066 (2017).

Sol. Energy (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Sol. Energy Mater. (1)

G. V. Jorgenson and J. C. Lee, “Doped vanadium oxide for optical switching films,” Sol. Energy Mater. 14(3-5), 205–214 (1986).
[Crossref]

Thin Solid Films (1)

W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, “Tungsten and fluorine co-doping of VO2films,” Thin Solid Films 402(1-2), 226–231 (2002).
[Crossref]

Other (4)

E. Palik Handbook of Optical Constants of Solids (1998).

D. M. Bierman, A. Lenert, M. A. Kats, Y. Zhou, S. Zhang, M. De La Ossa, S. Ramanathan, F. Capasso, and E. N. Wang, “Radiative thermal runaway due to negative differential thermal emission across a solid-solid phase transition,” http://arxiv.org/abs/1801.00376 (2017).

“Weather Underground,” https://www.wunderground.com/personal-weather-station/dashboard?ID=KCASTANF2#history/s20170719/e20170719/mdaily .

“Altitude and Azimuth of the Sun,” http://aa.usno.navy.mil/cgi-bin/aa_altazw.pl?form=1&body=10&year=2017&month=7&day=19&intv_mag=1&state=DC&place .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic showing the concept of self-adaptive radiative cooling: when temperature is above the critical temperature Tc, radiative cooling is turned on; when temperature is below the critical temperature Tc, radiative cooling is turned off. (b) Schematic of the ideal spectrum for self-adaptive radiative cooling. The spectrum switches between an ‘on’ and an ‘off’ state depending on the ambient temperature.
Fig. 2
Fig. 2 The real part (a) and the imaginary part (b) of the dielectric constants for VO2 used in the paper in the wavelength range from visible to mid-infrared.
Fig. 3
Fig. 3 Photonic structures for realizing self-adaptive radiative cooling. (a) A schematic for the bottom radiative cooler, which is made of three layer VO2/MgF2/W structure. (b) Solar absorptivity of the radiative cooler. (c) Infrared emissivity of the radiative cooler. (d) A schematic showing the top spectrally-selective filter, which is made of 11 layers of Ge/MgF2. (e) Transmissivity of the filter in the solar wavelength range. (f) Transmissivity of the filter in the thermal wavelength range. (g) Schematic of the combined system. (h) Solar absorptivity of the radiative cooler in presence of the filter on top. (i) Infrared emissivity of the radiative cooler in presence of the filter on top.
Fig. 4
Fig. 4 (a) The emissivity of the bottom radiative cooler in presence of the top filter, as a function of incident angle and wavelength. The VO2 is in the metallic phase. (b) Angle and polarization averaged absorptivity spectrum of the bottom radiative cooler in presence of the top filter. Red and blue line shows the absorptivity in metallic and insulating VO2 phase, respectively.
Fig. 5
Fig. 5 Transient thermal performance. (a) Time-dependent temperature evolution of the radiative cooler under different ambient temperature. The initial temperature is assumed to be the same as ambient temperature. The whole system is exposed to the sky at time = 0. (b) Time-dependent Qtotal, Qcooler, Qexchange, of the radiative cooler, and the temperature of the filter T filter , at Tamb = 313 K. (c) Time-dependent Qtotal, Qcooler, Qexchange, of the radiative cooler, and the temperature of the filter T filter , at Tamb = 298 K. (d). Time-dependent Qtotal, Qcooler, Qexchange, of the radiative cooler, and temperature of the filter, T filter at Tamb = 283K.
Fig. 6
Fig. 6 Thermal performance of the self-adaptive radiative cooler (black curve) over a 24h cycle with ambient temperature variation (red curve). Radiative cooling power of the radiative cooler is also plotted (blue curve). As a comparison, the thermal performance of a static radiative cooler with the same emissivity as the ‘on’ state of the self-adaptive radiative cooler is also plotted (black dashed curve).

Tables (1)

Tables Icon

Table 1 Material composition and thicknesses for the designed spectrally-selective filter.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ4 d Μ n M
ϵ( λ,Ω )=( 1 r C )( t F + t F r C r F + t F ( r C r F ) 2 + t F ( r C r F ) 3 + )=  t F ( 1 r C )/( 1 r C r F )
Q total = Q cooler ( T )  Q atm ( T amb )  Q parasitic ( T, T amb ) Q sun ( T )  Q exchange ( T, T filter )
Q cooler ( T )=AdΩcosθ 0 dλ I BB ( T,λ )ϵ( λ,Ω,T )
Q atm ( T amb )=AdΩcosθ 0 dλ I BB ( T amb ,λ )ϵ( λ,Ω,T ) ϵ atm ( λ,Ω )
Q parasitic ( T, T amb )=Ah( T amb T )
Q sun ( T )=A 0 dλ I AM1.5 ( λ )ϵ( λ, θ sun ,T )
Q exchange ( T, T filter )= AdΩcosθ{ 0 dλ I BB ( T filter ,λ ) ϵ filter ( λ,Ω ) ϵ cooler ( λ,Ω,T ) 0 dλ I BB ( T,λ ) ϵ filter ( λ,Ω ) ϵ cooler ( λ,Ω,T ) }
Q total,F = Q filter ( T filter )  Q atm,F ( T amb )  Q parasitic,F ( T filter , T amb ) Q sun,F +  Q exchange ( T, T filter )
C cooler dT dt =  Q total ( T, T amb , T filter )
C filter d T filter dt =  Q total,F ( T,  T amb , T filter )

Metrics