Abstract

This study simulated the generation and evolution of saltwater turbulence within a water tank. By pouring fresh water over saltwater in the tank, a layer of saline water with a fixed gradient was created. Convective turbulence was then formed by heating the bottom of the tank. The temperatures at different heights were measured using eight thermocouples; thus, the average temperatures and temperature fluctuations at different heights were calculated. The salinity profile was obtained by moving a conductivity probe up and down to measure the conductivity. Two-dimensional light intensity grayscale images were recorded after transmitting a collimated laser beam through the water tank, after which the normalized variance and power spectra of the light intensity fluctuations at different heights were calculated. The results showed that the saltwater in the tank could be divided by height into two layers, namely, the mixed layer and entrainment zone, according to the profiles of the average temperature and average salinity under the experimental conditions. Different portions of the images showed different characteristics. The part corresponding to the saltwater mixed layer was similar to that corresponding to the mixed layer in the fresh water experiment. However, a two-peak structure was observed in the curve of the normalized light intensity spectrum calculated from the grayscale values in the part corresponding to the bottom of the entrainment zone, whereas a two-peak structure was not found in the light intensity fluctuation spectrum corresponding to the mixed layer. According to the refractive index fluctuation spectrum model, one peak was due to temperature fluctuations, and the other peak was due to salinity fluctuations. It can be concluded that the salinity contribution to the refractive index fluctuation in the entrainment zone was larger than that in the mixed layer. Moreover, spectral analysis showed that in the saltwater, the inner scale of turbulent temperature fluctuation was approximately 1.9 mm, while the inner scale of turbulent salinity fluctuation was approximately 0.1 mm. These findings will be helpful for us to understand the microstructural characteristics of seawater turbulence and guide the implementation of optical transmission experiments in seawater.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation study on light propagation in an anisotropic turbulence field of entrainment zone

Renmin Yuan, Jianning Sun, Tao Luo, Xuping Wu, Chen Wang, and Yunfei Fu
Opt. Express 22(11) 13427-13437 (2014)

Simulation study on light propagation in an isotropic turbulence field of the mixed layer

Renmin Yuan, Jianning Sun, Tao Luo, Xuping Wu, Chen Wang, and Chao Lu
Opt. Express 22(6) 7194-7209 (2014)

Optical propagation in turbulent water

R. J. Hill
J. Opt. Soc. Am. 68(8) 1067-1072 (1978)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Raskoff, J. E. Purcell, and R. R. Hopcroft, “Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice,” Polar Biol. 28(3), 207–217 (2005).
    [Crossref]
  2. P. Bourgain, J. C. Gascard, J. Shi, and J. Zhao, “Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion,” Ocean Sci. 9(2), 447–460 (2013).
    [Crossref]
  3. J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
    [Crossref]
  4. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company Inc., New York, 1961).
  5. M. H. Alford, D. W. Gerdt, and C. M. Adkins, “An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index,” J. Atmos. Ocean. Technol. 23(1), 121–137 (2006).
    [Crossref]
  6. G. R. Ochs and R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24(15), 2430–2432 (1985).
    [Crossref] [PubMed]
  7. A. Consortini, J. H. Churnside, R. J. Hill, and F. Cochetti, “Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation,” J. Opt. Soc. Am. A 10(11), 2354–2362 (1993).
    [Crossref]
  8. Y. Baykal, “Intensity fluctuations of multimode laser beams in underwater medium,” J. Opt. Soc. Am. A 32(4), 593–598 (2015).
    [Crossref] [PubMed]
  9. Y. Baykal, “Scintillation index in strong oceanic turbulence,” Opt. Commun. 375, 15–18 (2016).
    [Crossref]
  10. O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
    [Crossref]
  11. N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285(6), 872–875 (2012).
    [Crossref]
  12. M. F. Hibberd and B. L. Sawford, “Design Criteria for Water Tank Models of Dispersion in the Planetary Convective Boundary-Layer,” Boundary-Layer Meteorol. 67(1-2), 97–118 (1994).
    [Crossref]
  13. R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
    [Crossref]
  14. G. Nootz, S. Matt, A. Kanaev, K. P. Judd, and W. Hou, “Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank,” Appl. Opt. 56(22), 6065–6072 (2017).
    [Crossref] [PubMed]
  15. J. S. Turner, “Influence of molecular diffusivity on turbulent entrainment across a density interface,” J. Fluid Mech. 33(04), 639–656 (1968).
    [Crossref]
  16. F. Hanson and M. Lasher, “Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber,” Appl. Opt. 49(16), 3224–3230 (2010).
    [Crossref] [PubMed]
  17. V. A. Kulikov, “Estimation of turbulent parameters based on the intensity scintillations of the laser beam propagated through a turbulent water layer,” J. Appl. Phys. 119(12), 123103 (2016).
    [Crossref]
  18. I. Campbell Scientific, CS547A Conductivity and Temperature Probe and A547 Interface (Campbell Scientific Inc., 2016).
  19. Thorpe, An Introduction to Ocean Turbulence (Cambridge University Press, 2007).
  20. R. B. Stull, An Introduction to Boundary Layer Meteorology (Reidel Publishing Co., 1988).
  21. H. Press, Willian, A. S. Teukolsky, T. W. Vetterling, and P. B. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, 2002).
  22. R. Yuan, J. Sun, T. Luo, X. Wu, C. Wang, and C. Lu, “Simulation study on light propagation in an isotropic turbulence field of the mixed layer,” Opt. Express 22(6), 7194–7209 (2014).
    [Crossref] [PubMed]
  23. H. M. Dobbins and E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. A 63(3), 318–320 (1973).
    [Crossref]
  24. J. C. Wyngaard and M. A. Lemone, “Behavior of the refractive-index structure parameter in the entraining convective boundary-layer,” J. Atmos. Sci. 37(7), 1573–1585 (1980).
    [Crossref]
  25. V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27(1), 82 (2000).
    [Crossref]
  26. X. Yi and I. B. Djordjevic, “Power spectrum of refractive-index fluctuations in turbulent ocean and its effect on optical scintillation,” Opt. Express 26(8), 10188–10202 (2018).
    [Crossref] [PubMed]
  27. R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. A 68(8), 1067–1072 (1978).
    [Crossref]
  28. S. S. Pawar and J. H. Arakeri, “Intensity and angle-of-arrival spectra of laser light propagating through axially homogeneous buoyancy-driven turbulence,” Appl. Opt. 55(22), 5945–5952 (2016).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2016 (3)

V. A. Kulikov, “Estimation of turbulent parameters based on the intensity scintillations of the laser beam propagated through a turbulent water layer,” J. Appl. Phys. 119(12), 123103 (2016).
[Crossref]

Y. Baykal, “Scintillation index in strong oceanic turbulence,” Opt. Commun. 375, 15–18 (2016).
[Crossref]

S. S. Pawar and J. H. Arakeri, “Intensity and angle-of-arrival spectra of laser light propagating through axially homogeneous buoyancy-driven turbulence,” Appl. Opt. 55(22), 5945–5952 (2016).
[Crossref] [PubMed]

2015 (2)

J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
[Crossref]

Y. Baykal, “Intensity fluctuations of multimode laser beams in underwater medium,” J. Opt. Soc. Am. A 32(4), 593–598 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

P. Bourgain, J. C. Gascard, J. Shi, and J. Zhao, “Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion,” Ocean Sci. 9(2), 447–460 (2013).
[Crossref]

2012 (2)

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285(6), 872–875 (2012).
[Crossref]

2011 (1)

R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
[Crossref]

2010 (1)

2006 (1)

M. H. Alford, D. W. Gerdt, and C. M. Adkins, “An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index,” J. Atmos. Ocean. Technol. 23(1), 121–137 (2006).
[Crossref]

2005 (1)

K. A. Raskoff, J. E. Purcell, and R. R. Hopcroft, “Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice,” Polar Biol. 28(3), 207–217 (2005).
[Crossref]

2000 (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27(1), 82 (2000).
[Crossref]

1994 (1)

M. F. Hibberd and B. L. Sawford, “Design Criteria for Water Tank Models of Dispersion in the Planetary Convective Boundary-Layer,” Boundary-Layer Meteorol. 67(1-2), 97–118 (1994).
[Crossref]

1993 (1)

1985 (1)

1980 (1)

J. C. Wyngaard and M. A. Lemone, “Behavior of the refractive-index structure parameter in the entraining convective boundary-layer,” J. Atmos. Sci. 37(7), 1573–1585 (1980).
[Crossref]

1978 (1)

R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. A 68(8), 1067–1072 (1978).
[Crossref]

1973 (1)

H. M. Dobbins and E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. A 63(3), 318–320 (1973).
[Crossref]

1968 (1)

J. S. Turner, “Influence of molecular diffusivity on turbulent entrainment across a density interface,” J. Fluid Mech. 33(04), 639–656 (1968).
[Crossref]

Adkins, C. M.

M. H. Alford, D. W. Gerdt, and C. M. Adkins, “An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index,” J. Atmos. Ocean. Technol. 23(1), 121–137 (2006).
[Crossref]

Alford, M. H.

M. H. Alford, D. W. Gerdt, and C. M. Adkins, “An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index,” J. Atmos. Ocean. Technol. 23(1), 121–137 (2006).
[Crossref]

Arakeri, J. H.

Baykal, Y.

Bourgain, P.

P. Bourgain, J. C. Gascard, J. Shi, and J. Zhao, “Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion,” Ocean Sci. 9(2), 447–460 (2013).
[Crossref]

Churnside, J. H.

Cochetti, F.

Consortini, A.

Djordjevic, I. B.

Dobbins, H. M.

H. M. Dobbins and E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. A 63(3), 318–320 (1973).
[Crossref]

Farwell, N.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285(6), 872–875 (2012).
[Crossref]

Gascard, J. C.

P. Bourgain, J. C. Gascard, J. Shi, and J. Zhao, “Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion,” Ocean Sci. 9(2), 447–460 (2013).
[Crossref]

Gerdt, D. W.

M. H. Alford, D. W. Gerdt, and C. M. Adkins, “An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index,” J. Atmos. Ocean. Technol. 23(1), 121–137 (2006).
[Crossref]

Hanson, F.

Hibberd, M. F.

M. F. Hibberd and B. L. Sawford, “Design Criteria for Water Tank Models of Dispersion in the Planetary Convective Boundary-Layer,” Boundary-Layer Meteorol. 67(1-2), 97–118 (1994).
[Crossref]

Hill, R. J.

Hopcroft, R. R.

K. A. Raskoff, J. E. Purcell, and R. R. Hopcroft, “Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice,” Polar Biol. 28(3), 207–217 (2005).
[Crossref]

Hou, W.

Judd, K. P.

Kanaev, A.

Kirillov, S.

J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
[Crossref]

Korotkova, O.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285(6), 872–875 (2012).
[Crossref]

Kulikov, V. A.

V. A. Kulikov, “Estimation of turbulent parameters based on the intensity scintillations of the laser beam propagated through a turbulent water layer,” J. Appl. Phys. 119(12), 123103 (2016).
[Crossref]

Lasher, M.

Lemone, M. A.

J. C. Wyngaard and M. A. Lemone, “Behavior of the refractive-index structure parameter in the entraining convective boundary-layer,” J. Atmos. Sci. 37(7), 1573–1585 (1980).
[Crossref]

Liu, H.

R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
[Crossref]

Lu, C.

Luo, T.

R. Yuan, J. Sun, T. Luo, X. Wu, C. Wang, and C. Lu, “Simulation study on light propagation in an isotropic turbulence field of the mixed layer,” Opt. Express 22(6), 7194–7209 (2014).
[Crossref] [PubMed]

R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
[Crossref]

Makhotin, M.

J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
[Crossref]

Matt, S.

Nikishov, V. I.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27(1), 82 (2000).
[Crossref]

Nikishov, V. V.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27(1), 82 (2000).
[Crossref]

Nootz, G.

Ochs, G. R.

Panteleev, G.

J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
[Crossref]

Pawar, S. S.

Peck, E. R.

H. M. Dobbins and E. R. Peck, “Change of refractive index of water as a function of temperature,” J. Opt. Soc. Am. A 63(3), 318–320 (1973).
[Crossref]

Purcell, J. E.

K. A. Raskoff, J. E. Purcell, and R. R. Hopcroft, “Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice,” Polar Biol. 28(3), 207–217 (2005).
[Crossref]

Raskoff, K. A.

K. A. Raskoff, J. E. Purcell, and R. R. Hopcroft, “Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice,” Polar Biol. 28(3), 207–217 (2005).
[Crossref]

Sawford, B. L.

M. F. Hibberd and B. L. Sawford, “Design Criteria for Water Tank Models of Dispersion in the Planetary Convective Boundary-Layer,” Boundary-Layer Meteorol. 67(1-2), 97–118 (1994).
[Crossref]

Shakhova, N.

J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
[Crossref]

Shchepakina, E.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

Shi, J.

P. Bourgain, J. C. Gascard, J. Shi, and J. Zhao, “Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion,” Ocean Sci. 9(2), 447–460 (2013).
[Crossref]

Stroh, J. N.

J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
[Crossref]

Sun, J.

R. Yuan, J. Sun, T. Luo, X. Wu, C. Wang, and C. Lu, “Simulation study on light propagation in an isotropic turbulence field of the mixed layer,” Opt. Express 22(6), 7194–7209 (2014).
[Crossref] [PubMed]

R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
[Crossref]

Turner, J. S.

J. S. Turner, “Influence of molecular diffusivity on turbulent entrainment across a density interface,” J. Fluid Mech. 33(04), 639–656 (1968).
[Crossref]

Wang, C.

Wu, X.

R. Yuan, J. Sun, T. Luo, X. Wu, C. Wang, and C. Lu, “Simulation study on light propagation in an isotropic turbulence field of the mixed layer,” Opt. Express 22(6), 7194–7209 (2014).
[Crossref] [PubMed]

R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
[Crossref]

Wyngaard, J. C.

J. C. Wyngaard and M. A. Lemone, “Behavior of the refractive-index structure parameter in the entraining convective boundary-layer,” J. Atmos. Sci. 37(7), 1573–1585 (1980).
[Crossref]

Yi, X.

Yuan, R.

R. Yuan, J. Sun, T. Luo, X. Wu, C. Wang, and C. Lu, “Simulation study on light propagation in an isotropic turbulence field of the mixed layer,” Opt. Express 22(6), 7194–7209 (2014).
[Crossref] [PubMed]

R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
[Crossref]

Zhao, J.

P. Bourgain, J. C. Gascard, J. Shi, and J. Zhao, “Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion,” Ocean Sci. 9(2), 447–460 (2013).
[Crossref]

Appl. Opt. (4)

Boundary-Layer Meteorol. (1)

M. F. Hibberd and B. L. Sawford, “Design Criteria for Water Tank Models of Dispersion in the Planetary Convective Boundary-Layer,” Boundary-Layer Meteorol. 67(1-2), 97–118 (1994).
[Crossref]

Int. J. Fluid Mech. Res. (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27(1), 82 (2000).
[Crossref]

J. Appl. Phys. (1)

V. A. Kulikov, “Estimation of turbulent parameters based on the intensity scintillations of the laser beam propagated through a turbulent water layer,” J. Appl. Phys. 119(12), 123103 (2016).
[Crossref]

J. Atmos. Ocean. Technol. (1)

M. H. Alford, D. W. Gerdt, and C. M. Adkins, “An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index,” J. Atmos. Ocean. Technol. 23(1), 121–137 (2006).
[Crossref]

J. Atmos. Sci. (1)

J. C. Wyngaard and M. A. Lemone, “Behavior of the refractive-index structure parameter in the entraining convective boundary-layer,” J. Atmos. Sci. 37(7), 1573–1585 (1980).
[Crossref]

J. Fluid Mech. (1)

J. S. Turner, “Influence of molecular diffusivity on turbulent entrainment across a density interface,” J. Fluid Mech. 33(04), 639–656 (1968).
[Crossref]

J. Geophys. Res. Oceans (1)

J. N. Stroh, G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, “Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean,” J. Geophys. Res. Oceans 120(11), 7223–7236 (2015).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Wind Eng. Ind. Aerodyn. (1)

R. Yuan, X. Wu, T. Luo, H. Liu, and J. Sun, “A review of water tank modeling of the convective atmospheric boundary layer,” J. Wind Eng. Ind. Aerodyn. 99(10), 1099–1114 (2011).
[Crossref]

Ocean Sci. (1)

P. Bourgain, J. C. Gascard, J. Shi, and J. Zhao, “Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion,” Ocean Sci. 9(2), 447–460 (2013).
[Crossref]

Opt. Commun. (2)

Y. Baykal, “Scintillation index in strong oceanic turbulence,” Opt. Commun. 375, 15–18 (2016).
[Crossref]

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285(6), 872–875 (2012).
[Crossref]

Opt. Express (2)

Polar Biol. (1)

K. A. Raskoff, J. E. Purcell, and R. R. Hopcroft, “Gelatinous zooplankton of the Arctic Ocean: in situ observations under the ice,” Polar Biol. 28(3), 207–217 (2005).
[Crossref]

Waves Random Complex Media (1)

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Waves Random Complex Media 22(2), 260–266 (2012).
[Crossref]

Other (5)

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company Inc., New York, 1961).

I. Campbell Scientific, CS547A Conductivity and Temperature Probe and A547 Interface (Campbell Scientific Inc., 2016).

Thorpe, An Introduction to Ocean Turbulence (Cambridge University Press, 2007).

R. B. Stull, An Introduction to Boundary Layer Meteorology (Reidel Publishing Co., 1988).

H. Press, Willian, A. S. Teukolsky, T. W. Vetterling, and P. B. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A. tank frame, B. heating tank, C. auxiliary tank, D. thermocouple sensor, E. vertical rod for fixing the thermocouple sensor, F. small vehicle on a track along the top of the tank, G. vertically moving conductivity sensor driven by a stepper motor (not shown in the figure), H. computer for collecting data and controlling the experiment, I. initial spot, J. receiving screen, K. CCD camera for recording the light intensity.
Fig. 2
Fig. 2 Average salinity profiles (a), average temperature profiles (b), and temperature variance profiles (c) at different moments. The figures on the figures are the moments corresponding to the profile measurements.
Fig. 3
Fig. 3 Temperature measurements from the thermocouple sensors at five different heights The points P1, P2, P3 P4, and P5 close to the curve denote the positions where the curves were obtained (see Fig. 2c). The colors for the curves for P1, P2, P3, P4 and P5 in the left panel are black, dark yellow, dark cyan, red and blue, respectively. S in (b) denotes the power spectrum density of temperature fluctuation, σT2 denotes temperature fluctuation variance, and f-5/3 represents the asymptotic kolmogorov scaling.
Fig. 4
Fig. 4 Image obtained on the receiving screen after the laser beam was transmitted through saline turbulence (a). Profile of the scintillation index calculated from the fluctuations in the light intensity at different heights (b). There are two white rectangles in (a): the upper box denotes the position for Fig. 5(a), and the lower box denotes the position for Fig. 6(a).
Fig. 5
Fig. 5 High-resolution spot (a) and spectral densities of the intensity fluctuations (b) obtained after a laser beam passes through the entrainment layer. The label “Hori” represents the normalized power spectrum calculated from the horizontal lines of the picture, and the label “Vert” represents the normalized power spectrum calculated from the vertical columns of the image. The spatial scale 5mm is shown in (a).
Fig. 6
Fig. 6 High-resolution spot (a) and spectral densities of the intensity fluctuations (b) obtained after a laser beam passes through the mixed layer. The spatial scale 5mm is shown in (a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β= I 2 ¯ I ¯ 2 I ¯ 2
C u = C z λv G u
C d = C z +λv G d
C z = G d C u + G u C d G d + G u
S= 0.646 + 0.483*C6.19 × 1 0 4 * C 2
K= 1 S/z z h S t dz

Metrics