Abstract

Engineering of TiO2 photoanode is an important strategy for increasing the photovoltaic conversion efficiency of quantum dots-sensitized solar cells (QDSSCs). In this work, three-dimensional ordered macroporous (3DOM) TiO2 films are fabricated by the controlled infiltrating-calcination method using the close-packed polystyrene spheres colloidal crystals as templates. The as-prepared macroporous TiO2 films are then applied as the photoanode in colloidal CdSe QDSSCs. This structure not only facilitates the penetration of thioglycolic acid capped CdSe QDs, and thus achieving a high coverage of the internal surface with QDs sensitizer, but also exhibits a photonic band gap with tunable positions, which could enhance the light absorption. As a result, the liquid-junction QDSSCs assembled with the CdSe sensitized 3DOM TiO2 yields a power conversion efficiency of 3.60% under solar illumination of 100 mW cm−2, and this value is much higher than that of the device using nanoporous TiO2 photoanode (1.82%). Our results indicate that the 3DOM TiO2 is a promising candidate for the construction of high-efficiency QDSSCs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim
Opt. Express 22(S3) A867-A879 (2014)

Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode

Xiao Wei Sun, Jing Chen, Jun Ling Song, De Wei Zhao, Wei Qiao Deng, and Wei Lei
Opt. Express 18(2) 1296-1301 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
    [Crossref]
  2. D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells 155, 294–322 (2016).
    [Crossref]
  3. S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
    [Crossref] [PubMed]
  4. W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
    [Crossref] [PubMed]
  5. S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
    [Crossref] [PubMed]
  6. M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
    [Crossref]
  7. N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
    [Crossref]
  8. G. Hodes, “Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells,” J. Phys. Chem. C 112(46), 17778–17787 (2008).
    [Crossref]
  9. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
    [Crossref] [PubMed]
  10. M. Seol, H. Kim, Y. Tak, and K. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell,” Chem. Commun. (Camb.) 46(30), 5521–5523 (2010).
    [Crossref] [PubMed]
  11. B. Mukherjee, Y. R. Smith, and V. Subramanian, “CdSe nanocrystal assemblies on anodized TiO2 nanotubes: Optical, surface, and photoelectrochemical properties,” J. Phys. Chem. C 116(29), 15175–15184 (2012).
    [Crossref]
  12. C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
    [Crossref]
  13. C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
    [Crossref] [PubMed]
  14. S. Bayram and L. Halaoui, “Amplification of solar energy conversion in quantum-confined CdSe-sensitized TiO2 photonic crystals by trapping light,” Part. Part. Syst. Charact. 30(8), 706–714 (2013).
    [Crossref]
  15. P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
    [Crossref]
  16. D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
    [Crossref]
  17. Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
    [Crossref]
  18. G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
    [Crossref]
  19. C.-Y. Cho, H.-N. Kim, and J. H. Moon, “Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 15(26), 10835–10840 (2013).
    [Crossref] [PubMed]
  20. Y. Park, J. W. Lee, S.-J. Ha, and J. H. Moon, “1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells,” Nanoscale 6(6), 3105–3109 (2014).
    [Crossref] [PubMed]
  21. J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
    [Crossref] [PubMed]
  22. S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
    [Crossref]
  23. M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
    [Crossref]
  24. X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
    [Crossref]
  25. G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
    [Crossref]
  26. E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
    [Crossref]
  27. D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method,” J. Phys. Chem. C 113(4), 1293–1300 (2009).
    [Crossref]
  28. X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
    [Crossref]
  29. A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
    [Crossref]
  30. D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
    [Crossref]
  31. L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
    [Crossref]
  32. T. Toyoda and Q. Shen, “Quantum-dot-sensitized solar cells: Effect of nanostructured TiO2 morphologies on photovoltaic properties,” J. Phys. Chem. Lett. 3(14), 1885–1893 (2012).
    [Crossref] [PubMed]
  33. Y. Chen, Z. Tang, and Z. Chen, “Fabrication of three-dimensionally ordered macroporous TiO2 films with enhanced photovoltaic conversion efficiency,” J. Inorg. Organomet. Polym. 23(4), 839–845 (2013).
    [Crossref]

2017 (5)

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

2016 (3)

G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
[Crossref]

D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells 155, 294–322 (2016).
[Crossref]

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

2015 (1)

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

2014 (1)

Y. Park, J. W. Lee, S.-J. Ha, and J. H. Moon, “1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells,” Nanoscale 6(6), 3105–3109 (2014).
[Crossref] [PubMed]

2013 (4)

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Y. Chen, Z. Tang, and Z. Chen, “Fabrication of three-dimensionally ordered macroporous TiO2 films with enhanced photovoltaic conversion efficiency,” J. Inorg. Organomet. Polym. 23(4), 839–845 (2013).
[Crossref]

S. Bayram and L. Halaoui, “Amplification of solar energy conversion in quantum-confined CdSe-sensitized TiO2 photonic crystals by trapping light,” Part. Part. Syst. Charact. 30(8), 706–714 (2013).
[Crossref]

C.-Y. Cho, H.-N. Kim, and J. H. Moon, “Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 15(26), 10835–10840 (2013).
[Crossref] [PubMed]

2012 (6)

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

B. Mukherjee, Y. R. Smith, and V. Subramanian, “CdSe nanocrystal assemblies on anodized TiO2 nanotubes: Optical, surface, and photoelectrochemical properties,” J. Phys. Chem. C 116(29), 15175–15184 (2012).
[Crossref]

T. Toyoda and Q. Shen, “Quantum-dot-sensitized solar cells: Effect of nanostructured TiO2 morphologies on photovoltaic properties,” J. Phys. Chem. Lett. 3(14), 1885–1893 (2012).
[Crossref] [PubMed]

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

2011 (2)

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
[Crossref]

2010 (2)

M. Seol, H. Kim, Y. Tak, and K. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell,” Chem. Commun. (Camb.) 46(30), 5521–5523 (2010).
[Crossref] [PubMed]

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

2009 (4)

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
[Crossref]

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method,” J. Phys. Chem. C 113(4), 1293–1300 (2009).
[Crossref]

N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
[Crossref]

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

2008 (1)

G. Hodes, “Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells,” J. Phys. Chem. C 112(46), 17778–17787 (2008).
[Crossref]

2007 (1)

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

2006 (1)

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

1999 (1)

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

1996 (1)

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
[Crossref]

Abe, R.

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

Ahn, K.-S.

G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
[Crossref]

An, L. J.

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

Balamurugan, M.

G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
[Crossref]

Bayram, S.

S. Bayram and L. Halaoui, “Amplification of solar energy conversion in quantum-confined CdSe-sensitized TiO2 photonic crystals by trapping light,” Part. Part. Syst. Charact. 30(8), 706–714 (2013).
[Crossref]

Beard, M. C.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

Bisquert, J.

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
[Crossref]

Boix, P. P.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

Calvo, M. E.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

Cao, Z.

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

Cassagne, D.

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

Chan, W. H.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method,” J. Phys. Chem. C 113(4), 1293–1300 (2009).
[Crossref]

Chen, J.

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Chen, X.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Z. Tang, and Z. Chen, “Fabrication of three-dimensionally ordered macroporous TiO2 films with enhanced photovoltaic conversion efficiency,” J. Inorg. Organomet. Polym. 23(4), 839–845 (2013).
[Crossref]

Chen, Z.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Y. Chen, Z. Tang, and Z. Chen, “Fabrication of three-dimensionally ordered macroporous TiO2 films with enhanced photovoltaic conversion efficiency,” J. Inorg. Organomet. Polym. 23(4), 839–845 (2013).
[Crossref]

Cheng, C.

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Chernomordik, B. D.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

Cho, C.-Y.

C.-Y. Cho, H.-N. Kim, and J. H. Moon, “Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 15(26), 10835–10840 (2013).
[Crossref] [PubMed]

Choi, M. M. F.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method,” J. Phys. Chem. C 113(4), 1293–1300 (2009).
[Crossref]

Chutinan, A.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Crisp, R. W.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

Diguna, L. J.

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Dong, X.

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

Du, J.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

Du, Z.

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Fan, H. J.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

Fang, J.

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Fowler, M.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Fu, X.

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

García-Vidal, F. J.

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

Gilbert, S. E.

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
[Crossref]

Giménez, S.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Gómez, R.

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
[Crossref]

Grätzel, M.

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
[Crossref]

Gu, J.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

Guijarro, N.

N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
[Crossref]

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Ha, S.-J.

Y. Park, J. W. Lee, S.-J. Ha, and J. H. Moon, “1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells,” Nanoscale 6(6), 3105–3109 (2014).
[Crossref] [PubMed]

Halaoui, L.

S. Bayram and L. Halaoui, “Amplification of solar energy conversion in quantum-confined CdSe-sensitized TiO2 photonic crystals by trapping light,” Part. Part. Syst. Charact. 30(8), 706–714 (2013).
[Crossref]

He, Z.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method,” J. Phys. Chem. C 113(4), 1293–1300 (2009).
[Crossref]

Hodes, G.

G. Hodes, “Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells,” J. Phys. Chem. C 112(46), 17778–17787 (2008).
[Crossref]

Hu, J.-S.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Huang, X.

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

Huang, Y.

Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
[Crossref]

Jha, R.

D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells 155, 294–322 (2016).
[Crossref]

Ji, X. L.

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

Jiang, G.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Jiang, L.

Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
[Crossref]

Jiang, S. C.

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

Jiang, W.

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

Jiao, S.

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

John, S.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Jouanin, C.

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

Kang, S. H.

G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
[Crossref]

Karuturi, S. K.

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Kavan, L.

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
[Crossref]

Kherani, N. P.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Kim, H.

M. Seol, H. Kim, Y. Tak, and K. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell,” Chem. Commun. (Camb.) 46(30), 5521–5523 (2010).
[Crossref] [PubMed]

Kim, H.-N.

C.-Y. Cho, H.-N. Kim, and J. H. Moon, “Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 15(26), 10835–10840 (2013).
[Crossref] [PubMed]

Kim, H.-S.

G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
[Crossref]

Kim, J.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
[Crossref]

Klemenz, C.

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
[Crossref]

Kumar, S.

D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells 155, 294–322 (2016).
[Crossref]

Kunioku, H.

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

Kwak, E. S.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
[Crossref]

Lana-Villarreal, T.

N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
[Crossref]

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Lee, C.-S.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Lee, H.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
[Crossref]

Lee, J. W.

Y. Park, J. W. Lee, S.-J. Ha, and J. H. Moon, “1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells,” Nanoscale 6(6), 3105–3109 (2014).
[Crossref] [PubMed]

Lee, W.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
[Crossref]

Li, C.

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

Li, D.

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Li, G.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Li, H.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Li, Y.

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

Lin, E.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Liu, B.

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

Liu, J.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Liu, L.

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Liu, X.

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

Long, D.

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

López-Tejeira, F.

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

Lu, Z.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Luan, C.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Lui, G.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Luo, J.

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

Ma, C.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Ma, D.

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

Macor, L.

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Marshall, A. R.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

Meng, S.

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Míguez, H.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Mihi, A.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Moon, J. H.

Y. Park, J. W. Lee, S.-J. Ha, and J. H. Moon, “1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells,” Nanoscale 6(6), 3105–3109 (2014).
[Crossref] [PubMed]

C.-Y. Cho, H.-N. Kim, and J. H. Moon, “Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 15(26), 10835–10840 (2013).
[Crossref] [PubMed]

Mora-Seró, I.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
[Crossref]

Mukherjee, B.

B. Mukherjee, Y. R. Smith, and V. Subramanian, “CdSe nanocrystal assemblies on anodized TiO2 nanotubes: Optical, surface, and photoelectrochemical properties,” J. Phys. Chem. C 116(29), 15175–15184 (2012).
[Crossref]

Nakazawa, N.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

O’Brien, P. G.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Ohtani, B.

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

Ozin, G. A.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Pach, G. F.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

Pan, D. C.

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

Pan, Z.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

Pang, J. B.

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

Park, N.-G.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
[Crossref]

Park, Y.

Y. Park, J. W. Lee, S.-J. Ha, and J. H. Moon, “1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells,” Nanoscale 6(6), 3105–3109 (2014).
[Crossref] [PubMed]

Peng, W.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Reynolds, A.

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

Roy, V. A. L.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Sadakane, M.

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

Samadpour, M.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

Sánchez-Dehesa, J.

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

Sasaki, K.

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

Scheel, H. J.

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
[Crossref]

Seol, M.

M. Seol, H. Kim, Y. Tak, and K. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell,” Chem. Commun. (Camb.) 46(30), 5521–5523 (2010).
[Crossref] [PubMed]

Shao, Y.

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Sharma, D.

D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells 155, 294–322 (2016).
[Crossref]

Shen, G.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Shen, Q.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

T. Toyoda and Q. Shen, “Quantum-dot-sensitized solar cells: Effect of nanostructured TiO2 morphologies on photovoltaic properties,” J. Phys. Chem. Lett. 3(14), 1885–1893 (2012).
[Crossref] [PubMed]

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Smith, Y. R.

B. Mukherjee, Y. R. Smith, and V. Subramanian, “CdSe nanocrystal assemblies on anodized TiO2 nanotubes: Optical, surface, and photoelectrochemical properties,” J. Phys. Chem. C 116(29), 15175–15184 (2012).
[Crossref]

Song, X.

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

Song, Y.

Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
[Crossref]

Su, L. T.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

Subramanian, V.

B. Mukherjee, Y. R. Smith, and V. Subramanian, “CdSe nanocrystal assemblies on anodized TiO2 nanotubes: Optical, surface, and photoelectrochemical properties,” J. Phys. Chem. C 116(29), 15175–15184 (2012).
[Crossref]

Sun, J.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Taghavinia, N.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

Tak, Y.

M. Seol, H. Kim, Y. Tak, and K. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell,” Chem. Commun. (Camb.) 46(30), 5521–5523 (2010).
[Crossref] [PubMed]

Tang, Z.

Y. Chen, Z. Tang, and Z. Chen, “Fabrication of three-dimensionally ordered macroporous TiO2 films with enhanced photovoltaic conversion efficiency,” J. Inorg. Organomet. Polym. 23(4), 839–845 (2013).
[Crossref]

Tetreault, N.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Tok, A. I.

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Toyoda, T.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

T. Toyoda and Q. Shen, “Quantum-dot-sensitized solar cells: Effect of nanostructured TiO2 morphologies on photovoltaic properties,” J. Phys. Chem. Lett. 3(14), 1885–1893 (2012).
[Crossref] [PubMed]

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Turner, J. A.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

Ueda, W.

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

Vekris, E.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Wang, H.

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Wang, J.

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
[Crossref]

Wang, L.

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

Wang, Q.

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

Wang, X.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Wang, Y.

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

Wei, J.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Xia, C.

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

Xie, M.

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

Xu, J.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Xu, Z.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Xue, C.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Yan, X.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Yan, Y.

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

Yang, G.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Yang, X.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Ye, K.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Yong, K.

M. Seol, H. Kim, Y. Tak, and K. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell,” Chem. Commun. (Camb.) 46(30), 5521–5523 (2010).
[Crossref] [PubMed]

Yu, A.

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Yu, J.

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Yun, G.

G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
[Crossref]

Zad, A. I.

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

Zhang, D.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Zhang, H.

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

Zhang, T.

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Zhang, W.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Zhang, X.

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
[Crossref]

Zhao, D.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method,” J. Phys. Chem. C 113(4), 1293–1300 (2009).
[Crossref]

Zheng, X.

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

Zhong, X.

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Zhu, X.

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

Zhu, Z.

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

Zukotynski, S.

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

ACS Appl. Mater. Interfaces (1)

W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.-S. Hu, Q. Shen, and X. Zhong, “Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells,” ACS Appl. Mater. Interfaces 9(6), 5328–5336 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater. 19(7), 1093–1099 (2009).
[Crossref]

Adv. Mater. (1)

P. G. O’Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[Crossref]

Adv. Mater. Interfaces (1)

C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, and C. Cheng, “3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance,” Adv. Mater. Interfaces 2(18), 1500428 (2015).
[Crossref]

Chem. Commun. (Camb.) (1)

M. Seol, H. Kim, Y. Tak, and K. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell,” Chem. Commun. (Camb.) 46(30), 5521–5523 (2010).
[Crossref] [PubMed]

Chem. Mater. (1)

D. C. Pan, Q. Wang, J. B. Pang, S. C. Jiang, X. L. Ji, and L. J. An, “Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure,” Chem. Mater. 18(18), 4253–4258 (2006).
[Crossref]

Electrochim. Acta (1)

M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró, “Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells,” Electrochim. Acta 75, 139–147 (2012).
[Crossref]

Energy Environ. Sci. (1)

D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, and X. Zhang, “Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries,” Energy Environ. Sci. 5(9), 8538–8542 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, “Electrochemical and photoelectrochemical investigation of single-crystal anatase,” J. Am. Chem. Soc. 118(28), 6716–6723 (1996).
[Crossref]

J. Electrochem. Soc. (1)

X. Song, J. Wang, X. Liu, M. Xie, Y. Wang, X. Dong, Y. Yan, and C. Xia, “Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells,” J. Electrochem. Soc. 164(4), H215–H224 (2017).
[Crossref]

J. Inorg. Organomet. Polym. (1)

Y. Chen, Z. Tang, and Z. Chen, “Fabrication of three-dimensionally ordered macroporous TiO2 films with enhanced photovoltaic conversion efficiency,” J. Inorg. Organomet. Polym. 23(4), 839–845 (2013).
[Crossref]

J. Mater. Chem. (2)

M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation,” J. Mater. Chem. 20(9), 1811–1818 (2010).
[Crossref]

Y. Zhang, J. Wang, Y. Huang, Y. Song, and L. Jiang, “Fabrication of functional colloidal photonic crystals based on well-designed latex particles,” J. Mater. Chem. 21(37), 14113–14126 (2011).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

S. Meng, D. Li, X. Zheng, J. Wang, J. Chen, J. Fang, Y. Shao, and X. Fu, “ZnO photonic crystals with enhanced photocatalytic activity and photostability,” J. Mater. Chem. A Mater. Energy Sustain. 1(8), 2744–2747 (2013).
[Crossref]

J. Phys. Chem. C (5)

G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, and S. H. Kang, “Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting,” J. Phys. Chem. C 120(11), 5906–5915 (2016).
[Crossref]

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-Acetyl-L-cysteine via hydrothermal method,” J. Phys. Chem. C 113(4), 1293–1300 (2009).
[Crossref]

B. Mukherjee, Y. R. Smith, and V. Subramanian, “CdSe nanocrystal assemblies on anodized TiO2 nanotubes: Optical, surface, and photoelectrochemical properties,” J. Phys. Chem. C 116(29), 15175–15184 (2012).
[Crossref]

N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: Effect of QD coverage and mode of attachment,” J. Phys. Chem. C 113(10), 4208–4214 (2009).
[Crossref]

G. Hodes, “Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells,” J. Phys. Chem. C 112(46), 17778–17787 (2008).
[Crossref]

J. Phys. Chem. Lett. (2)

T. Toyoda and Q. Shen, “Quantum-dot-sensitized solar cells: Effect of nanostructured TiO2 morphologies on photovoltaic properties,” J. Phys. Chem. Lett. 3(14), 1885–1893 (2012).
[Crossref] [PubMed]

S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and X. Zhong, “Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%,” J. Phys. Chem. Lett. 8(3), 559–564 (2017).
[Crossref] [PubMed]

Nano Energy (1)

G. Lui, G. Li, X. Wang, G. Jiang, E. Lin, M. Fowler, A. Yu, and Z. Chen, “Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries,” Nano Energy 24, 72–77 (2016).
[Crossref]

Nano Lett. (1)

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V. A. L. Roy, W. Zhang, and C.-S. Lee, “Arrays of ZnO/ZnxCd1-xSe nanocables: band gap engineering and photovoltaic applications,” Nano Lett. 11(10), 4138–4143 (2011).
[Crossref] [PubMed]

Nanoscale (1)

Y. Park, J. W. Lee, S.-J. Ha, and J. H. Moon, “1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells,” Nanoscale 6(6), 3105–3109 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009).
[Crossref] [PubMed]

Nat. Energy (1)

Y. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, and M. C. Beard, “Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%,” Nat. Energy 2(5), 17052 (2017).
[Crossref]

New J. Chem. (1)

X. Yan, K. Ye, T. Zhang, C. Xue, D. Zhang, C. Ma, J. Wei, and G. Yang, “Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity,” New J. Chem. 41(16), 8482–8489 (2017).
[Crossref]

Part. Part. Syst. Charact. (1)

S. Bayram and L. Halaoui, “Amplification of solar energy conversion in quantum-confined CdSe-sensitized TiO2 photonic crystals by trapping light,” Part. Part. Syst. Charact. 30(8), 706–714 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

C.-Y. Cho, H.-N. Kim, and J. H. Moon, “Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 15(26), 10835–10840 (2013).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sánchez-Dehesa, “Spectral properties of opal-based photonic crystals having a SiO2 matrix,” Phys. Rev. B 60, 11422–11426 (1999).
[Crossref]

Sci. Rep. (1)

J. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Tok, and H. J. Fan, “Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion,” Sci. Rep. 2(1), 451 (2012).
[Crossref] [PubMed]

Small (1)

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells 155, 294–322 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The SEM images of four different PS templates prepared from PS-210 (a, b, and c) and PS-295 (d, e) spheres at different magnifications.
Fig. 2
Fig. 2 Reflectance spectra of the PS templates prepared from 210-nm and 295-nm PS sphere. Insets are the photographs of the PS templates assembled with monodispersed PS spheres with different diameters.
Fig. 3
Fig. 3 The SEM images of 3DOM TiO2 films prepared from the PS-295 sphere (a) and nanoporous TiO2 (c). Panel b and d is their corresponding SEM images after sensitization with colloidal CdSe QDs.
Fig. 4
Fig. 4 (a) The XRD patterns of FTO substrate and 3DOM TiO2 photoanodes made from 210-nm (curve a) and 295-nm (curve b) PS spheres. The XPS spectra of CdSe-sensitized 3DOM TiO2 photoanode: (b) Ti 2P, (c) Cd 3d, and (d) Se 3d.
Fig. 5
Fig. 5 (a) UV–vis absorption spectra of nanoporous TiO2 and TiO2/CdSe photoanodes. (b) The absorption spectra of the 3DOM TiO2 prepared from 210-nm and 295-nm PS before and after sensitization with CdSe QDs.
Fig. 6
Fig. 6 J-V curves of the QDSSC assembled with 3DOM TiO2 and nanoporous TiO2 photoandoe.

Tables (1)

Tables Icon

Table 1 Photovoltaic parameters of QDSSC assembled with different photoanodes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ max =2 d hkl ( n eff 2 sin 2 θ ) 1 2
d hkl = a h 2 + k 2 + l 2 .

Metrics