Abstract

A microtracking concentrator photovoltaics (CPV) module with a bi-convex aspheric lens array was designed, and its performance was numerically and experimentally verified. The lens shape was optimized considering the yearly incidence characteristics of direct solar radiation. The lens optimized at 127 × was found to converge 68.7% of the yearly cumulative direct solar radiation to solar cells and to be robust against changes in installation azimuth and tilt angles. The incidence-angle characteristics of a prototype lens agreed well with the design analysis. In an outdoor test using a prototype microtracking CPV module with an optimized lens and a triple-junction solar cell, the power generation was 1.32 times higher than that of the 17%-efficient Si cell and nearly 30% module conversion efficiency was achieved under clear sky conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical analysis of a PMMA–water core-shell spherical lens for microtracking concentrator photovoltaic systems

Masakazu Nakatani and Noboru Yamada
OSA Continuum 2(11) 3165-3175 (2019)

High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
    [Crossref]
  2. A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
    [Crossref]
  3. Fraunhofer Institute for Solar Energy Systems, “New world record for solar cell efficiency at 46% – French-German cooperation confirms competitive advantage of European photovoltaic industry,” (2014) https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html .
  4. H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
    [Crossref]
  5. N. León, H. García, and C. Ramírez, “Semi-passive solar tracking concentrator,” Energy Procedia 57, 275–284 (2014).
    [Crossref]
  6. H. García, C. Ramírez, and N. León, “Innovative solar tracking concept by rotating prism array,” Int. J. Photoenergy 2014, 807159 (2014).
    [Crossref]
  7. N. León, C. Ramírez, and H. García, “Rotating prism array for solar tracking,” Energy Procedia 57, 265–274 (2014).
    [Crossref]
  8. J. Cheng, S. Park, and C.-L. Chen, “Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization,” Sol. Energy 89, 152–161 (2013).
    [Crossref]
  9. J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
    [Crossref]
  10. V. Narasimhan, D. Jiang, and S.-Y. Park, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Appl. Energy 162, 450–459 (2016).
    [Crossref]
  11. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19(S3Suppl 3), A207–A218 (2011).
    [Crossref] [PubMed]
  12. F. Duerr, Y. Meuret, and H. Thienpont, “Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics,” Opt. Express 21(S3Suppl 3), A401–A411 (2013).
    [Crossref] [PubMed]
  13. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
    [Crossref] [PubMed]
  14. V. Zagolla, D. Dominé, E. Tremblay, and C. Moser, “Self-tracking solar concentrator with an acceptance angle of 32°,” Opt. Express 22(S7Suppl 7), A1880–A1894 (2014).
    [Crossref] [PubMed]
  15. H. Ma and L. Wu, “Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications,” Appl. Opt. 54(20), 6217–6223 (2015).
    [Crossref] [PubMed]
  16. Y. Liu, R. Huang, and C. K. Madsen, “Design of a lens-to-channel waveguide system as a solar concentrator structure,” Opt. Express 22(S2), A198–A204 (2014).
    [Crossref]
  17. Y. Liu, R. Huang, and C. K. Madsen, “Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator,” Opt. Express 22(S6Suppl 6), A1567–A1575 (2014).
    [Crossref] [PubMed]
  18. T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
    [Crossref]
  19. J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
    [Crossref] [PubMed]
  20. A. J. Grede, J. S. Price, and N. C. Giebink, “Fundamental and practical limits of planar tracking solar concentrators,” Opt. Express 24(26), A1635–A1646 (2016).
    [Crossref] [PubMed]
  21. J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
    [Crossref]
  22. S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
    [Crossref]
  23. N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovolt. Res. Appl. 24(6), 846–854 (2016).
    [Crossref]

2017 (3)

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
[Crossref]

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

2016 (4)

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovolt. Res. Appl. 24(6), 846–854 (2016).
[Crossref]

V. Narasimhan, D. Jiang, and S.-Y. Park, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Appl. Energy 162, 450–459 (2016).
[Crossref]

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

A. J. Grede, J. S. Price, and N. C. Giebink, “Fundamental and practical limits of planar tracking solar concentrators,” Opt. Express 24(26), A1635–A1646 (2016).
[Crossref] [PubMed]

2015 (2)

H. Ma and L. Wu, “Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications,” Appl. Opt. 54(20), 6217–6223 (2015).
[Crossref] [PubMed]

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref] [PubMed]

2014 (6)

2013 (3)

J. Cheng, S. Park, and C.-L. Chen, “Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization,” Sol. Energy 89, 152–161 (2013).
[Crossref]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

F. Duerr, Y. Meuret, and H. Thienpont, “Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics,” Opt. Express 21(S3Suppl 3), A401–A411 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19(S3Suppl 3), A207–A218 (2011).
[Crossref] [PubMed]

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

2008 (1)

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Adachi, D.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Apostoleris, H.

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Baker, K. A.

Brulo, G. S.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Burroughs, S.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Chen, C.-L.

J. Cheng, S. Park, and C.-L. Chen, “Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization,” Sol. Energy 89, 152–161 (2013).
[Crossref]

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Cheng, J.

J. Cheng, S. Park, and C.-L. Chen, “Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization,” Sol. Energy 89, 152–161 (2013).
[Crossref]

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Chiesa, M.

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Dominé, D.

Duerr, F.

Fisher, B.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Ford, J. E.

García, H.

N. León, C. Ramírez, and H. García, “Rotating prism array for solar tracking,” Energy Procedia 57, 265–274 (2014).
[Crossref]

N. León, H. García, and C. Ramírez, “Semi-passive solar tracking concentrator,” Energy Procedia 57, 275–284 (2014).
[Crossref]

H. García, C. Ramírez, and N. León, “Innovative solar tracking concept by rotating prism array,” Int. J. Photoenergy 2014, 807159 (2014).
[Crossref]

Geisz, J.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Giebink, N. C.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

A. J. Grede, J. S. Price, and N. C. Giebink, “Fundamental and practical limits of planar tracking solar concentrators,” Opt. Express 24(26), A1635–A1646 (2016).
[Crossref] [PubMed]

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref] [PubMed]

Glunz, S. W.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

Grede, A. J.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

A. J. Grede, J. S. Price, and N. C. Giebink, “Fundamental and practical limits of planar tracking solar concentrators,” Opt. Express 24(26), A1635–A1646 (2016).
[Crossref] [PubMed]

Hallas, J. M.

He, J.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Hermle, M.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

Hirai, D.

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovolt. Res. Appl. 24(6), 846–854 (2016).
[Crossref]

Huang, R.

Irie, T.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Jiang, D.

V. Narasimhan, D. Jiang, and S.-Y. Park, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Appl. Energy 162, 450–459 (2016).
[Crossref]

Kanematsu, M.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Karp, J. H.

Kawasaki, H.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Kim, N.

T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
[Crossref]

Konishi, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Kurtz, S.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Kwak, P.

T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
[Crossref]

Lee, J.

T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
[Crossref]

Lee, K.-T.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

León, N.

H. García, C. Ramírez, and N. León, “Innovative solar tracking concept by rotating prism array,” Int. J. Photoenergy 2014, 807159 (2014).
[Crossref]

N. León, C. Ramírez, and H. García, “Rotating prism array for solar tracking,” Energy Procedia 57, 265–274 (2014).
[Crossref]

N. León, H. García, and C. Ramírez, “Semi-passive solar tracking concentrator,” Energy Procedia 57, 275–284 (2014).
[Crossref]

Lim, T.

T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
[Crossref]

Lipski, M. V.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Liu, Y.

Ma, H.

Ma, X.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Madsen, C. K.

McMahon, W. E.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Meulblok, B. M.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref] [PubMed]

Meuret, Y.

Moser, C.

Myers, D.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Nakano, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Narasimhan, V.

V. Narasimhan, D. Jiang, and S.-Y. Park, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Appl. Energy 162, 450–459 (2016).
[Crossref]

Nuzzo, R. G.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Park, S.

J. Cheng, S. Park, and C.-L. Chen, “Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization,” Sol. Energy 89, 152–161 (2013).
[Crossref]

Park, S.-Y.

V. Narasimhan, D. Jiang, and S.-Y. Park, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Appl. Energy 162, 450–459 (2016).
[Crossref]

Price, J. S.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

A. J. Grede, J. S. Price, and N. C. Giebink, “Fundamental and practical limits of planar tracking solar concentrators,” Opt. Express 24(26), A1635–A1646 (2016).
[Crossref] [PubMed]

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref] [PubMed]

Rahn, C. D.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Ramírez, C.

N. León, H. García, and C. Ramírez, “Semi-passive solar tracking concentrator,” Energy Procedia 57, 275–284 (2014).
[Crossref]

N. León, C. Ramírez, and H. García, “Rotating prism array for solar tracking,” Energy Procedia 57, 265–274 (2014).
[Crossref]

H. García, C. Ramírez, and N. León, “Innovative solar tracking concept by rotating prism array,” Int. J. Photoenergy 2014, 807159 (2014).
[Crossref]

Richter, A.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

Rogers, J. A.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref] [PubMed]

Sheng, X.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref] [PubMed]

Song, K.

T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
[Crossref]

Stefancich, M.

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Steiner, M.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

Thienpont, H.

Tremblay, E.

Tremblay, E. J.

Uto, T.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Uzu, H.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Wang, B.

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

Wu, L.

Yamada, N.

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovolt. Res. Appl. 24(6), 846–854 (2016).
[Crossref]

Yamamoto, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Yoshida, W.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Yoshikawa, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

Zagolla, V.

Appl. Energy (1)

V. Narasimhan, D. Jiang, and S.-Y. Park, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Appl. Energy 162, 450–459 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Energy Procedia (2)

N. León, H. García, and C. Ramírez, “Semi-passive solar tracking concentrator,” Energy Procedia 57, 275–284 (2014).
[Crossref]

N. León, C. Ramírez, and H. García, “Rotating prism array for solar tracking,” Energy Procedia 57, 265–274 (2014).
[Crossref]

IEEE J. Photovoltaics (1)

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

Int. J. Photoenergy (1)

H. García, C. Ramírez, and N. León, “Innovative solar tracking concept by rotating prism array,” Int. J. Photoenergy 2014, 807159 (2014).
[Crossref]

Nat. Commun. (1)

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref] [PubMed]

Nat. Energy (3)

J. S. Price, A. J. Grede, B. Wang, M. V. Lipski, B. Fisher, K.-T. Lee, J. He, G. S. Brulo, X. Ma, S. Burroughs, C. D. Rahn, R. G. Nuzzo, J. A. Rogers, and N. C. Giebink, “High-concentration planar microtracking photovoltaic system exceeding 30% efficiency,” Nat. Energy 2(8), 17113 (2017).
[Crossref]

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2(5), 17032 (2017).
[Crossref]

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Opt. Express (6)

Prog. Photovolt. Res. Appl. (3)

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl. 16(6), 537–546 (2008).
[Crossref]

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovolt. Res. Appl. 24(6), 846–854 (2016).
[Crossref]

T. Lim, P. Kwak, K. Song, N. Kim, and J. Lee, “Automated dual-axis planar solar tracker with controllable vertical displacement for concentrating solar microcell arrays,” Prog. Photovolt. Res. Appl. 25(1), 123–131 (2017).
[Crossref]

Sol. Energy (1)

J. Cheng, S. Park, and C.-L. Chen, “Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization,” Sol. Energy 89, 152–161 (2013).
[Crossref]

Other (1)

Fraunhofer Institute for Solar Energy Systems, “New world record for solar cell efficiency at 46% – French-German cooperation confirms competitive advantage of European photovoltaic industry,” (2014) https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Design concept of the proposed microtracking CPV module with a bi-convex aspheric lens array.
Fig. 2
Fig. 2 Optical simulation model for the bi-convex aspheric lens design.
Fig. 3
Fig. 3 Simulated annual direct irradiation on the PV cell concentrated by microtracking with the optimized bi-convex aspheric lens array. The result of the optimized plano-convex aspheric lens array with the same geometrical concentration ratio is also plotted for comparison.
Fig. 4
Fig. 4 Simulated incidence-angle dependency of the optimized bi-convex and plano-convex aspheric lens array (ϕ ′ = 0°). Adjacent lenses are hidden in the illustrations.
Fig. 5
Fig. 5 Tolerance to tilt angle and azimuth angle of the microtracking module with the designed bi-convex aspheric lens array.
Fig. 6
Fig. 6 Indoor test apparatus for measuring incidence-angle dependency.
Fig. 7
Fig. 7 Comparison between measured and simulated incidence-angle dependency of the optimized bi-convex aspheric lens array (ϕ ′ = 0°).
Fig. 8
Fig. 8 Prototype microtracking CPV module with the designed bi-convex aspheric lens array and a triple-junction solar cell.
Fig. 9
Fig. 9 Measured daily performance of the prototype microtracking CPV module compared with a 17%-efficient conventional PV module (Si cell).
Fig. 10
Fig. 10 Comparison between measured and simulated optical efficiency for the outdoor test.

Tables (2)

Tables Icon

Table 1 Optical simulation conditions

Tables Icon

Table 2 Optimization parameters [search range] (optimized value)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E annual = θ i =0° 90° E( θ i ) η opt ( θ i ) ,
z top = c top r 2 1+ 1( 1+ k top ) c top 2 r 2
z bottom = c bottom r 2 1+ 1( 1+ k bottom ) c bottom 2 r 2 +t,
η opt ( θ i )= η opt ( θ i ,0° )+ η opt ( θ i ,10° )+ η opt ( θ i ,20° )+ η opt ( θ i ,30° ). 4

Metrics