Abstract

Concentrating photovoltaic-thermal (CPVT) systems, which can be integrated on buildings façades and use low-accuracy trackers and standard cells, have the potential to produce cost-effective electricity and heat. In this paper, a refractive cylindrical CPVT module with cells directly immersed in deionized water (DIW) or isopropyl alcohol (IPA) is designed, fabricated and experimentally tested. The interfaces between the cylinder and the fluids cavity have been optimized to maximize optical efficiency and irradiance uniformity, obtaining better results for a geometric concentration of 10x and IPA. The system achieves an optical efficiency of 81%, an acceptance angle of 1.07° and a non-uniformity coefficient of 0.13.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance of see-through prism CPV module for window integrated photovoltaics

Noboru Yamada, Kosuke Kanno, Kentaro Hayashi, and Toru Tokimitsu
Opt. Express 19(S4) A649-A656 (2011)

High performance Fresnel-based photovoltaic concentrator

Pablo Benítez, Juan C. Miñano, Pablo Zamora, Rubén Mohedano, Aleksandra Cvetkovic, Marina Buljan, Julio Chaves, and Maikel Hernández
Opt. Express 18(S1) A25-A40 (2010)

References

  • View by:
  • |
  • |
  • |

  1. EPBD, Energy Performance of Buildings (EPBD) Directive 2010/31/EU (European Parliament, 2010).
  2. A. H. A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev. 77, 109–130 (2017).
    [Crossref]
  3. R. M. da Silva and J. L. M. Fernandes, “Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab,” Sol. Energy 84(12), 1985–1996 (2010).
    [Crossref]
  4. D. Chemisana, “Building Integrated Concentrating Photovoltaics: A review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
    [Crossref]
  5. C. Lamnatou and D. Chemisana, “Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues,” Renew. Sustain. Energy Rev. 78, 916–932 (2017).
    [Crossref]
  6. Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
    [Crossref]
  7. S. Kurtz Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (Revision) (2011).
  8. A. Zacharopoulos, P. Eames, D. McLarnon, and B. Norton, “Linear Dielectric Non-Imaging Concentrating Covers For PV Integrated Building Facades,” Sol. Energy 68(5), 439–452 (2000).
    [Crossref]
  9. N. Sarmah, B. S. Richards, and T. K. Mallick, “Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods,” Appl. Opt. 50(19), 3303–3310 (2011).
    [Crossref] [PubMed]
  10. D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
    [Crossref]
  11. S. P. Philipps, A. W. Bett, K. Horowitz, and S. Kurtz, “Current Status of Concentrator Photovoltaic (CPV) Technology,” ISE/NREL Rep. (2015).
  12. Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
    [Crossref]
  13. X. Han, Y. Wang, and L. Zhu, “Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids,” Appl. Energy 88(12), 4481–4489 (2011).
    [Crossref]
  14. M. Vivar and V. Everett, “A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems,” Prog. Photovolt. Res. Appl. 22(6), 612–633 (2014).
    [Crossref]
  15. D. Chemisana, E. F. Fernandez, A. Riverola, and A. Moreno, “Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications,” Renew. Energy 123, 267–272 (2018).
    [Crossref]
  16. A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
    [Crossref]
  17. “SCHOTT catalog,” http://www.schott.com .
  18. ASTM, “G173-03 Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” B. Stand. 14.04, (2004).
  19. SAS Silicon cells, “SR6SKUN 156.75 x 156.75 Monocrystalline Solar Cell 5 Bus bars,” (2017).
  20. F. Duerr, Y. Meuret, and H. Thienpont, “Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics,” Opt. Express 21(S3Suppl 3), A401–A411 (2013).
    [Crossref] [PubMed]
  21. E. Muslimov, E. Hugot, W. Jahn, S. Vives, M. Ferrari, B. Chambion, D. Henry, and C. Gaschet, “Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture,” Opt. Express 25(13), 14598–14610 (2017).
    [Crossref] [PubMed]
  22. A. Mellor, J. L. Domenech-Garret, D. Chemisana, and J. I. Rosell, “A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination,” Sol. Energy 83(9), 1459–1465 (2009).
    [Crossref]
  23. D. Chemisana and J. I. Rosell, “Electrical performance increase of concentrator solar cells under Gaussian temperature profiles,” Prog. Photovolt. Res. Appl. 21, 444–455 (2013).
  24. H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
    [Crossref]
  25. M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
    [Crossref] [PubMed]
  26. A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).
  27. S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, “Loss Analysis for Laser Separated Solar Cells,” Energy Procedia 55, 326–330 (2014).
    [Crossref]

2018 (3)

D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
[Crossref]

D. Chemisana, E. F. Fernandez, A. Riverola, and A. Moreno, “Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications,” Renew. Energy 123, 267–272 (2018).
[Crossref]

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

2017 (3)

E. Muslimov, E. Hugot, W. Jahn, S. Vives, M. Ferrari, B. Chambion, D. Henry, and C. Gaschet, “Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture,” Opt. Express 25(13), 14598–14610 (2017).
[Crossref] [PubMed]

A. H. A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev. 77, 109–130 (2017).
[Crossref]

C. Lamnatou and D. Chemisana, “Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues,” Renew. Sustain. Energy Rev. 78, 916–932 (2017).
[Crossref]

2016 (1)

Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
[Crossref]

2014 (2)

M. Vivar and V. Everett, “A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems,” Prog. Photovolt. Res. Appl. 22(6), 612–633 (2014).
[Crossref]

S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, “Loss Analysis for Laser Separated Solar Cells,” Energy Procedia 55, 326–330 (2014).
[Crossref]

2013 (2)

F. Duerr, Y. Meuret, and H. Thienpont, “Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics,” Opt. Express 21(S3Suppl 3), A401–A411 (2013).
[Crossref] [PubMed]

D. Chemisana and J. I. Rosell, “Electrical performance increase of concentrator solar cells under Gaussian temperature profiles,” Prog. Photovolt. Res. Appl. 21, 444–455 (2013).

2012 (1)

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

2011 (3)

X. Han, Y. Wang, and L. Zhu, “Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids,” Appl. Energy 88(12), 4481–4489 (2011).
[Crossref]

D. Chemisana, “Building Integrated Concentrating Photovoltaics: A review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

N. Sarmah, B. S. Richards, and T. K. Mallick, “Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods,” Appl. Opt. 50(19), 3303–3310 (2011).
[Crossref] [PubMed]

2010 (1)

R. M. da Silva and J. L. M. Fernandes, “Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab,” Sol. Energy 84(12), 1985–1996 (2010).
[Crossref]

2009 (2)

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref] [PubMed]

A. Mellor, J. L. Domenech-Garret, D. Chemisana, and J. I. Rosell, “A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination,” Sol. Energy 83(9), 1459–1465 (2009).
[Crossref]

2002 (1)

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

2000 (1)

A. Zacharopoulos, P. Eames, D. McLarnon, and B. Norton, “Linear Dielectric Non-Imaging Concentrating Covers For PV Integrated Building Facades,” Sol. Energy 68(5), 439–452 (2000).
[Crossref]

Abrahamyan, Y. A.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Alonso Alvarez, D.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Al-Waeli, A. H. A.

A. H. A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev. 77, 109–130 (2017).
[Crossref]

Amanlou, Y.

Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
[Crossref]

Anisimova, I. D.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Antón, I.

Aroutiounian, V. M.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Asinari, P.

A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).

Baig, H.

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

Chaichan, M. T.

A. H. A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev. 77, 109–130 (2017).
[Crossref]

Chambion, B.

Chemisana, D.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

D. Chemisana, E. F. Fernandez, A. Riverola, and A. Moreno, “Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications,” Renew. Energy 123, 267–272 (2018).
[Crossref]

C. Lamnatou and D. Chemisana, “Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues,” Renew. Sustain. Energy Rev. 78, 916–932 (2017).
[Crossref]

D. Chemisana and J. I. Rosell, “Electrical performance increase of concentrator solar cells under Gaussian temperature profiles,” Prog. Photovolt. Res. Appl. 21, 444–455 (2013).

D. Chemisana, “Building Integrated Concentrating Photovoltaics: A review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

A. Mellor, J. L. Domenech-Garret, D. Chemisana, and J. I. Rosell, “A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination,” Sol. Energy 83(9), 1459–1465 (2009).
[Crossref]

Chiavazzo, E.

A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).

da Silva, R. M.

R. M. da Silva and J. L. M. Fernandes, “Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab,” Sol. Energy 84(12), 1985–1996 (2010).
[Crossref]

Domenech-Garret, J. L.

A. Mellor, J. L. Domenech-Garret, D. Chemisana, and J. I. Rosell, “A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination,” Sol. Energy 83(9), 1459–1465 (2009).
[Crossref]

Domínguez, C.

Duerr, F.

Eames, P.

A. Zacharopoulos, P. Eames, D. McLarnon, and B. Norton, “Linear Dielectric Non-Imaging Concentrating Covers For PV Integrated Building Facades,” Sol. Energy 68(5), 439–452 (2000).
[Crossref]

Eiternick, S.

S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, “Loss Analysis for Laser Separated Solar Cells,” Energy Procedia 55, 326–330 (2014).
[Crossref]

Ekins-Daukes, N.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Everett, V.

M. Vivar and V. Everett, “A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems,” Prog. Photovolt. Res. Appl. 22(6), 612–633 (2014).
[Crossref]

Fernandes, J. L. M.

R. M. da Silva and J. L. M. Fernandes, “Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab,” Sol. Energy 84(12), 1985–1996 (2010).
[Crossref]

Fernandez, E. F.

D. Chemisana, E. F. Fernandez, A. Riverola, and A. Moreno, “Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications,” Renew. Energy 123, 267–272 (2018).
[Crossref]

Ferrari, M.

Ferre Llin, L.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Francini, F.

A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).

Freier, D.

D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
[Crossref]

Gamio, C.

D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
[Crossref]

Gaschet, C.

Ghobadian, B.

Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
[Crossref]

Guarracino, I.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Han, X.

X. Han, Y. Wang, and L. Zhu, “Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids,” Appl. Energy 88(12), 4481–4489 (2011).
[Crossref]

Heasman, K. C.

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

Henry, D.

Hugot, E.

Jafry, T.

D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
[Crossref]

Jahn, W.

Karamian, G. G.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Kaufmann, K.

S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, “Loss Analysis for Laser Separated Solar Cells,” Energy Procedia 55, 326–330 (2014).
[Crossref]

Kazem, H. A.

A. H. A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev. 77, 109–130 (2017).
[Crossref]

Lamnatou, C.

C. Lamnatou and D. Chemisana, “Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues,” Renew. Sustain. Energy Rev. 78, 916–932 (2017).
[Crossref]

Mallick, T. K.

Mamat, R.

Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
[Crossref]

Markides, C. N.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Martoyan, G. A.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

McLarnon, D.

A. Zacharopoulos, P. Eames, D. McLarnon, and B. Norton, “Linear Dielectric Non-Imaging Concentrating Covers For PV Integrated Building Facades,” Sol. Energy 68(5), 439–452 (2000).
[Crossref]

Mellor, A.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

A. Mellor, J. L. Domenech-Garret, D. Chemisana, and J. I. Rosell, “A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination,” Sol. Energy 83(9), 1459–1465 (2009).
[Crossref]

Meuret, Y.

Moradi, A.

A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).

Moreno, A.

D. Chemisana, E. F. Fernandez, A. Riverola, and A. Moreno, “Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications,” Renew. Energy 123, 267–272 (2018).
[Crossref]

Mouradyan, A. A.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Muhammad-Sukki, F.

D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
[Crossref]

Muslimov, E.

Naja, G.

Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
[Crossref]

Norton, B.

A. Zacharopoulos, P. Eames, D. McLarnon, and B. Norton, “Linear Dielectric Non-Imaging Concentrating Covers For PV Integrated Building Facades,” Sol. Energy 68(5), 439–452 (2000).
[Crossref]

Paul, D. J.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Ramirez-Iniguez, R.

D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
[Crossref]

Richards, B. S.

Riverola, A.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

D. Chemisana, E. F. Fernandez, A. Riverola, and A. Moreno, “Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications,” Renew. Energy 123, 267–272 (2018).
[Crossref]

Rosell, J. I.

D. Chemisana and J. I. Rosell, “Electrical performance increase of concentrator solar cells under Gaussian temperature profiles,” Prog. Photovolt. Res. Appl. 21, 444–455 (2013).

A. Mellor, J. L. Domenech-Garret, D. Chemisana, and J. I. Rosell, “A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination,” Sol. Energy 83(9), 1459–1465 (2009).
[Crossref]

Sala, G.

Sani, E.

A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).

Sarmah, N.

Schneider, J.

S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, “Loss Analysis for Laser Separated Solar Cells,” Energy Procedia 55, 326–330 (2014).
[Crossref]

Serago, V. I.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Simonetti, M.

A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).

Sopian, K.

A. H. A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev. 77, 109–130 (2017).
[Crossref]

Stafeev, V. I.

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Tavakoli, T.

Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
[Crossref]

Thienpont, H.

Turek, M.

S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, “Loss Analysis for Laser Separated Solar Cells,” Energy Procedia 55, 326–330 (2014).
[Crossref]

Victoria, M.

Vivar, M.

M. Vivar and V. Everett, “A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems,” Prog. Photovolt. Res. Appl. 22(6), 612–633 (2014).
[Crossref]

Vives, S.

Wang, Y.

X. Han, Y. Wang, and L. Zhu, “Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids,” Appl. Energy 88(12), 4481–4489 (2011).
[Crossref]

Zacharopoulos, A.

A. Zacharopoulos, P. Eames, D. McLarnon, and B. Norton, “Linear Dielectric Non-Imaging Concentrating Covers For PV Integrated Building Facades,” Sol. Energy 68(5), 439–452 (2000).
[Crossref]

Zhu, L.

X. Han, Y. Wang, and L. Zhu, “Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids,” Appl. Energy 88(12), 4481–4489 (2011).
[Crossref]

Appl. Energy (1)

X. Han, Y. Wang, and L. Zhu, “Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids,” Appl. Energy 88(12), 4481–4489 (2011).
[Crossref]

Appl. Opt. (1)

Energy Procedia (1)

S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, “Loss Analysis for Laser Separated Solar Cells,” Energy Procedia 55, 326–330 (2014).
[Crossref]

Opt. Express (3)

Prog. Photovolt. Res. Appl. (2)

M. Vivar and V. Everett, “A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems,” Prog. Photovolt. Res. Appl. 22(6), 612–633 (2014).
[Crossref]

D. Chemisana and J. I. Rosell, “Electrical performance increase of concentrator solar cells under Gaussian temperature profiles,” Prog. Photovolt. Res. Appl. 21, 444–455 (2013).

Renew. Energy (1)

D. Chemisana, E. F. Fernandez, A. Riverola, and A. Moreno, “Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications,” Renew. Energy 123, 267–272 (2018).
[Crossref]

Renew. Sustain. Energy Rev. (6)

D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, “A review of optical concentrators for portable solar photovoltaic systems for developing countries,” Renew. Sustain. Energy Rev. 90, 957–968 (2018).
[Crossref]

D. Chemisana, “Building Integrated Concentrating Photovoltaics: A review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

C. Lamnatou and D. Chemisana, “Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues,” Renew. Sustain. Energy Rev. 78, 916–932 (2017).
[Crossref]

Y. Amanlou, T. Tavakoli, B. Ghobadian, G. Naja, and R. Mamat, “A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems,” Renew. Sustain. Energy Rev. 60, 1430–1441 (2016).
[Crossref]

A. H. A. Al-Waeli, K. Sopian, H. A. Kazem, and M. T. Chaichan, “Photovoltaic/Thermal (PV/T) systems: Status and future prospects,” Renew. Sustain. Energy Rev. 77, 109–130 (2017).
[Crossref]

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

Sol. Energy (3)

R. M. da Silva and J. L. M. Fernandes, “Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab,” Sol. Energy 84(12), 1985–1996 (2010).
[Crossref]

A. Zacharopoulos, P. Eames, D. McLarnon, and B. Norton, “Linear Dielectric Non-Imaging Concentrating Covers For PV Integrated Building Facades,” Sol. Energy 68(5), 439–452 (2000).
[Crossref]

A. Mellor, J. L. Domenech-Garret, D. Chemisana, and J. I. Rosell, “A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination,” Sol. Energy 83(9), 1459–1465 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Y. A. Abrahamyan, V. I. Serago, V. M. Aroutiounian, I. D. Anisimova, V. I. Stafeev, G. G. Karamian, G. A. Martoyan, and A. A. Mouradyan, “The efficiency of solar cells immersed in liquid dielectrics,” Sol. Energy Mater. Sol. Cells 73(4), 367–375 (2002).
[Crossref]

Other (7)

A. Moradi, E. Sani, M. Simonetti, F. Francini, E. Chiavazzo, and P. Asinari, “CFD modeling of solar collector with nano-fluid direct absorption for civil application,” Proc. 3rd Ed. Int. Conf. Microgeneration Relat. Technol. (2013).

“SCHOTT catalog,” http://www.schott.com .

ASTM, “G173-03 Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” B. Stand. 14.04, (2004).

SAS Silicon cells, “SR6SKUN 156.75 x 156.75 Monocrystalline Solar Cell 5 Bus bars,” (2017).

S. P. Philipps, A. W. Bett, K. Horowitz, and S. Kurtz, “Current Status of Concentrator Photovoltaic (CPV) Technology,” ISE/NREL Rep. (2015).

EPBD, Energy Performance of Buildings (EPBD) Directive 2010/31/EU (European Parliament, 2010).

S. Kurtz Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (Revision) (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Architectural image of the concentrating system incorporated on the left window. The shading and the see-through effect of the system can be appreciated together with a 3D detail of a module with its main characteristics. Differential lighting is illustrated by incorporating a standard glass pane on the right glazing.
Fig. 2
Fig. 2 Ray-tracing of the optimum interfaces at 10x for (a) DIW and (b) IPA. Four wavelengths are depicted from 400 to 1100 nm.
Fig. 3
Fig. 3 (a) Solar concentration over the solar cell for a geometric concentration of 10x for both dielectric liquids (DIW and IPA). (b) Relative efficiency vs. Misalignment angle for a geometric concentration of 10x for both dielectric liquids (DIW and IPA).
Fig. 4
Fig. 4 Spectral optical efficiency for DIW and IPA at 10x together with the normalized spectral short-circuit current (Jsc(λ)) (black dashed line) to highlight wavelengths at which the spectral optical efficiency should be maximum.
Fig. 5
Fig. 5 Optical efficiencies as a function of the initial rays x-coordinate and the solar azimuth angle for DIW (a) and IPA (b) with solar altitude tracking. (c) Ray-tracing for ϕ = 60° and at 589.3 nm (mean of sodium D-lines) in the configuration of 10x with DIW - dashed lines indicate that these rays are under TIR. (d) Overall system efficiencies as a function of azimuth angle for DIW and IPA.
Fig. 6
Fig. 6 (a) Mechanized lens for the case of DIW. (b) Prototype where the concentrated beam over the cell can be seen. (c) Detail of the lens without the dielectric liquid and illuminated with a divergent point light source to qualitatively illustrate optical performance.
Fig. 7
Fig. 7 Simulated uniformity profile for λ = 640.1 nm and validation by comparing the profiles widths with a millimeter paper on the cell plane (details incorporated on the graphs) for DIW (a) and IPA (b).
Fig. 8
Fig. 8 Experimental current density-voltage characteristic of the system with DIW and IPA for a global irradiance of 1043 Wm−2.

Tables (2)

Tables Icon

Table 1 Optimization results

Tables Icon

Table 2 Detailed Optical Losses under 10x

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U= max( J sc,x )min( J sc,x ) max( J sc,x )+min( J sc,x )
W= w 1 * | J sc,η=1 J sc | J sc,η=1 + w 2 *U

Metrics