Abstract

In this paper, a broadband absorber utilizing monolayer molybdenum disulfide (MoS2) is proposed, and a generalized interference theory (GIT) is derived to investigate this absorber. Using the hybrid Lorentz–Drude and Gaussian model of monolayer MoS2 and the dyadic Green’s functions, the propagation properties of monolayer MoS2 are first investigated. Then, a sandwich-like MoS2-based absorber design is proposed in the visible regime. The sandwich-like structure is mounted on a fully reflective gold mirror, which forms a Fabry-Perot resonator to strengthen light–matter interactions and enhance the absorption. To numerically calculate the absorption performance of this absorber, the GIT is next derived from interference theory. The numerical results indicate that an absorption ≥ 90% is obtained for a range of wavelengths (λ) from 389 to 517 nm, and this absorber can operate well, even with an angle of incidence up to 60°, which also verifies the prediction of the MoS2-based absorber mainly operating at λ < 700 nm. Afterward, the operating mechanism of the proposed design is determined using the theory of destructive interference. Finally, the proposed design and derived GIT are validated by a simulation using commercial electromagnetic software. The derived GIT drives the numerical investigation of the multilayer structure with various polarization types and angles of incidence of the waves, and the MoS2-based absorber can be used in several applications such as photoelectric storage and photoelectric detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials

Jiao Wang and Yannan Jiang
Opt. Express 25(5) 5206-5216 (2017)

Plasmon-enhanced broadband absorption of MoS2-based structure using Au nanoparticles

Kun Zhou, Jinlin Song, Lu Lu, Zixue Luo, and Qiang Cheng
Opt. Express 27(3) 2305-2316 (2019)

Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures

Hua Lu, Xuetao Gan, Dong Mao, Yicun Fan, Dexing Yang, and Jianlin Zhao
Opt. Express 25(18) 21630-21636 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
    [Crossref] [PubMed]
  2. S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
    [Crossref]
  3. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  4. S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
    [Crossref] [PubMed]
  5. J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
    [Crossref] [PubMed]
  6. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
    [Crossref] [PubMed]
  7. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
    [Crossref] [PubMed]
  8. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref] [PubMed]
  9. X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
    [Crossref]
  10. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
    [Crossref] [PubMed]
  11. J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
    [Crossref] [PubMed]
  12. W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
    [Crossref] [PubMed]
  13. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
    [Crossref] [PubMed]
  14. B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
    [Crossref]
  15. Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
    [Crossref]
  16. X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
    [Crossref]
  17. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  18. X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
    [Crossref] [PubMed]
  19. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  20. D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
    [Crossref] [PubMed]
  21. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  22. S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
    [Crossref]
  23. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  24. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
    [Crossref] [PubMed]
  25. J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
    [Crossref] [PubMed]
  26. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  27. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  28. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
    [Crossref] [PubMed]
  29. Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
    [Crossref] [PubMed]
  30. S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
    [Crossref]
  31. A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
    [Crossref] [PubMed]
  32. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  33. C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
    [Crossref] [PubMed]
  34. J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
    [Crossref]
  35. Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
    [Crossref]
  36. B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
    [Crossref]
  37. L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
    [Crossref]
  38. D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
    [Crossref] [PubMed]
  39. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
    [Crossref] [PubMed]
  40. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  41. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  42. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
    [Crossref]
  43. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
    [Crossref]
  44. D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
    [Crossref]
  45. V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).
  46. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]

2018 (5)

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
[Crossref]

2017 (8)

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref] [PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[Crossref] [PubMed]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

2016 (9)

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

2015 (10)

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
[Crossref] [PubMed]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

2014 (3)

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

2013 (2)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

2012 (4)

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

2011 (1)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

2010 (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Aközbek, N.

Amara, K. K.

Amin, M.

Aqeeli, M.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Ashrafi, M.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Bagci, H.

Bao, Q.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Belle, B. D.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Bianco, G. V.

Britnell, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Bruno, G.

Cai, Y.

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

Cartamil-Bueno, S. J.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Chang, K.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Chang, K. H.

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Chen, C.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Chen, H. T.

Chen, J.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Chen, J. C.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Chen, L. Y.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Chen, S.

Chen, Y.

Cheng, Y.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Chu, P. K.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

D’Orazio, A.

Dai, S.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Davidovikj, D.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

de Ceglia, D.

De Vittorio, M.

Deng, X. H.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Dhanabalan, S. C.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Du, Y.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Duesberg, G. S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Eda, G.

Faimak, K.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fan, D.

Farhat, M.

Fedorinin, V. N.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Furchi, M. M.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

Geim, A. K.

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gelfand, A. V.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Grande, M.

Gunlycke, D.

Guo, Z.

Han, Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hou, X.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Hsin Chang, K.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

Hu, X. P.

Hu, Z.

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[Crossref] [PubMed]

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Huang, H.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Huang, L.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Huang, P. Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Huang, R. Z.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Huang, X.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Huang, Y.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref] [PubMed]

Huo, D.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Jalil, R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ji, G.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Ji, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Jiang, G.

Jiang, Y.

Kang, K.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kim, C.J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Kuznesov, S. A.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Lazorskiy, P. A.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lei, Y.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Leng, T.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Li, B.

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

Li, D.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Li, D. H.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Li, P.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Li, S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Li, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Li, Z.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Liang, X.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Lin, S.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Liu, J. Q.

Liu, J. T.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Liu, L.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Liu, W.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Liu, Y.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Long, L. S.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lu, S.

Lu, X.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Lunney, J. G.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Luo, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Ma, J.

Ma, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Man Luk, C.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Mccoubrey, K.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

McEvoy, N.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Mei, L.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Mirza, I.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Mishchenko, A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Mitchell, A.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Morozov, S. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Mu, H.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Mueller, T.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

Mukherjee, B.

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
[Crossref]

Muller, D.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Novoselov, K. S.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

O’Brien, M.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Ong, Z. Y.

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

Pan, C.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Park, J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Paulish, A. G.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Peng, J.

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

Peres, N. M.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Petruzzelli, V.

Phelan, P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Ping Lau, S.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ponraj, J. S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Poot, M.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Pospischil, A.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

Pradhan, A. K.

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

Pradhan, S. K.

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

Pu, M.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Qiao, H.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Quan, B.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Ren, X.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Rosengarten, G.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Scalora, M.

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shao, J.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Shi, J.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Simsek, E.

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
[Crossref]

Sivan, V. P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Song, J.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Song, X. F.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Steeneken, P. G.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Stomeo, T.

Su, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Sun, B.

Sun, Z.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Tang, D.

Tao, W.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Thakur, S.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Tseng, F.

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

van der Zant, H. S. J.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Vincenti, M. A.

Wang, C.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Wang, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, J.

Wang, L. L.

Wang, L. P.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Wang, S. Y.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Wang, T. B.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Wang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Wang, Y.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Wang, Z. Y.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Wen, S.

Wen, S. C.

Winters, S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Wu, P.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Wu, Y. B.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Xia, S. X.

Xiao, B.

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

Xiao, Q.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Xie, H.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Xie, S.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Xie, Z. D.

Xu, J. L.

Xu, J. P.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Xu, X.

Xu, Y.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Xu, Z.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Xu, Z. Q.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Xue, Y.

Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
[Crossref]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Yang, W.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Yang, Y.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Yang, Z.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Ye, H.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Ye, Z. L.

Yim, C.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Yu, W.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Yu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Yu, X. F.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Yuan, J.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Zeng, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Zhai, X.

Zhang, D. W.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhang, G.

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

Zhang, H.

Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
[Crossref]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Zhang, J.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Zhang, R. J.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Zhang, Y.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Zhao, C.

Zhao, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Zhao, Y.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Zheng, Y. X.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhou, P.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhu, M.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Zhu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

2D Mater. (1)

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

Adv Sci (Weinh) (1)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Adv. Mater. (1)

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Appl. Surf. Sci. (1)

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Chin. Opt. Lett. (1)

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Nano Lett. (1)

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Nanoscale (3)

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Nature (2)

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

Opt. Express (8)

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. B (2)

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Sci. Rep. (3)

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Science (1)

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Other (1)

V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Complex permittivity of monolayer MoS2.
Fig. 2
Fig. 2 (a) Schematic of MoS2, characterized by the surface conductivity σs, embedded between two dielectrics (side view). Reflection coefficients for (b) and (c) MoS2 in free space, (d) and (e) MoS2 covering the dielectric with εr = 3, (b) and (d) TE wave, and (c) and (e) TM wave.
Fig. 3
Fig. 3 (a) Schematic of the transmission and reflection for a five-layered sandwich-like structure. (b) Absorption map for various d with normal wave illumination and NLSS = 1. (c) Absorption map and (d) absorption spectra for various NLSSs with normal wave illumination, d = 58.65 nm, and d1, d2, d3dNLSS–1 = 1 nm. (e) and (f) Absorption spectra for various angles of incidence under the incident TE and TM waves, respectively, when NLSS = 5 and d1 = d2 = d3 = d4 = 1 nm. Amplitude difference and phase difference of the direct reflection and multiple reflections for (g) various NLSS with a normally incident wave, and (h) TE and (i) TM-polarized incident wave with various angles of incidence at NLSS = 5.
Fig. 4
Fig. 4 Absorptions for various NLSSs and angles of incidence with TE and TM wave: (a)–(c), (d)–(f) TE and TM waves for NLSS = 1, 3, and 5 and incident wave, respectively. The blue curves denote the theoretical calculation results, while the red isolated points denote the simulation results from CST.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε c = ε c LD + ε c G ,
ε c LD ( ω )= ε + j=0 5 α j ω p 2 ω j 2 ω 2 iω b j .
ε c,i G ( ω )=αexp( ( ωζ ) 2 2 δ 2 ).
ε c,r G ( ω )= 1 π PV + ε c,i G ( ω' ) ω'ω dω'.
R TE = m 2 p l p l+1 j σ s ω μ l+1 m 2 p l + p l+1 +j σ s ω μ l+1 ,
R TM = ω ε l ( n 2 p l p l+1 )j σ s p l p l+1 ω ε l ( n 2 p l + p l+1 )j σ s p l p l+1 ,
p l 2 = k ρ 2 k l 2 , k ρ =ksinθ,ρ= ( xx' ) 2 + ( yy' ) 2 .
σ s =Im( ε c )ω ε 0 d 0 .
T TE = 1+ R TE m 2 n 2
T TM = 1 R TM p l+1 / p l .
A=1 | Γ 1 | 2 ,
Γ l = r l,l+1 + t l+1,l t l,l+1 Γ l+1 e i2 ϕ l 1 r l+1,l Γ l+1 e i2ϕ = r l,l+1 + Λ l+1,l .
ϕ l = D l k l 2 k ρ 2 =j D l p l ,
D l d l + Re( ε c ) d 0 ε r ,

Metrics