Abstract

Lithium niobate-on-insulator (LNOI) waveguides fabricated on a silicon wafer using a room-temperature bonding method have potential application as Si-based high-density photonic integrated circuits. A surface-activated bonding method using a Si nanoadhesive layer was found to produce a strong bond between LN and SiO2/Si at room temperature, which is sufficient to withstand both the wafer-thinning (LN thickness <5 μm) and surface micromachining processes used to form the strongly confined waveguides. In addition, the bond quality and optical propagation characteristics of the resulting LNOI waveguides were investigated, and the applicability of this bonding method to low-loss LNOI waveguide fabrication is discussed. The propagation loss for the ridged waveguide was approximately 2 dB/cm at a wavelength of 1550 nm, which was sufficiently low for the device application. The results of the present study will be of significant use in the development of fabrication techniques for waveguides with any bonded materials using this room-temperature bonding method, and not only LN core/SiO2 cladding waveguides.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Amorphous silicon-lithium niobate thin film strip-loaded waveguides

Yiwen Wang, Zhihua Chen, Lutong Cai, Yunpeng Jiang, Houbin Zhu, and Hui Hu
Opt. Mater. Express 7(11) 4018-4028 (2017)

Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing

Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 24(2) 1386-1391 (2016)

Silicon grating coupler on a lithium niobate thin film waveguide

Zhihua Chen, Yiwen Wang, Honghu Zhang, and Hui Hu
Opt. Mater. Express 8(5) 1253-1258 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
    [Crossref]
  2. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  3. G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for microphotonics devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  4. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
    [Crossref] [PubMed]
  5. A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
    [Crossref] [PubMed]
  6. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).
  7. H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
    [Crossref]
  8. C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
    [Crossref]
  9. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
    [Crossref]
  10. R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).
  11. R. Takigawa, H. Kawano, H. Ikenoue, and T. Asano, “Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation,” Jpn. J. Appl. Phys. 56(8), 088002 (2017).
    [Crossref]
  12. H. Kawano, R. Takigawa, H. Ikenoue, and T. Asano, “Bonding of Lithium niobate to Silicon in ambient air using laser irradiation,” Jpn. J. Appl. Phys. 55(8S3), 08RB09 (2016).
    [Crossref]
  13. F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
    [Crossref] [PubMed]
  14. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012).
    [Crossref] [PubMed]
  15. L. Chen, J. Nagy, and R. M. Reano, “Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon,” Opt. Mater. Express 6(7), 2460 (2016).
    [Crossref]
  16. H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74(16), 2387–2389 (1999).
    [Crossref]
  17. M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89(3), 031914 (2006).
    [Crossref]
  18. R. Takigawa, E. Higuarshi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express 1, 112201 (2008).
    [Crossref]
  19. R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
    [Crossref]
  20. R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates,” Opt. Express 19(17), 15739–15749 (2011).
    [Crossref] [PubMed]
  21. R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Room-temperature transfer bonding of Lithium niobate thin film on micromachined silicon substrates with Au microbumps,” Sens. Actuators A Phys. 264, 274–281 (2017).
    [Crossref]
  22. T. Shimatsu and M. Uomoto, “Atomic diffusion bonding of wafers with thin nanocrystalline metal films,” J. Vac. Sci. Technol. B 28(4), 706–714 (2010).
    [Crossref]
  23. H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon oxide by the surface activation method,” Sens. Actuators A Phys. 70(1-2), 164–170 (1998).
    [Crossref]
  24. M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
    [Crossref]
  25. R. Kondou, C. Wang, A. Shigetou, and T. Suga, “Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding,” Microelectron. Reliab. 52(2), 342–346 (2012).
    [Crossref]
  26. T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
    [Crossref]
  27. J. Utsumi, K. Ide, and Y. Ichiyanagi, “Room-temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films,” Jpn. J. Appl. Phys. 55(2), 026503 (2016).
    [Crossref]
  28. R. Takigawa, E. Higurashi, and T. Asano, “Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding,” Jpn. J. Appl. Phys. 57(6S1), 06HJ12 (2018).
    [Crossref]
  29. M. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitteruck, “Bonding of Silicon wafers for Silicon-on-Insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
    [Crossref]
  30. C. Messmer and J. C. Bilello, “The surface energy of Si, GaAs, GaP,” J. Appl. Phys. 52(7), 4623–4629 (1981).
    [Crossref]
  31. N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [Crossref]
  32. R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22(22), 27733–27738 (2014).
    [Crossref] [PubMed]
  33. R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguide,” Jpn. J. Appl. Phys. 55(11), 110304 (2016).
    [Crossref]
  34. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
  35. R. G. Hunsberger, “Integrated Optics Theory and Technology”, Chap. 5, pp. 83–86, Springer-Verlag, New York, 1985.
  36. R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]

2018 (2)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).

R. Takigawa, E. Higurashi, and T. Asano, “Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding,” Jpn. J. Appl. Phys. 57(6S1), 06HJ12 (2018).
[Crossref]

2017 (2)

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Room-temperature transfer bonding of Lithium niobate thin film on micromachined silicon substrates with Au microbumps,” Sens. Actuators A Phys. 264, 274–281 (2017).
[Crossref]

R. Takigawa, H. Kawano, H. Ikenoue, and T. Asano, “Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation,” Jpn. J. Appl. Phys. 56(8), 088002 (2017).
[Crossref]

2016 (6)

H. Kawano, R. Takigawa, H. Ikenoue, and T. Asano, “Bonding of Lithium niobate to Silicon in ambient air using laser irradiation,” Jpn. J. Appl. Phys. 55(8S3), 08RB09 (2016).
[Crossref]

L. Chen, J. Nagy, and R. M. Reano, “Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon,” Opt. Mater. Express 6(7), 2460 (2016).
[Crossref]

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
[Crossref] [PubMed]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref] [PubMed]

J. Utsumi, K. Ide, and Y. Ichiyanagi, “Room-temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films,” Jpn. J. Appl. Phys. 55(2), 026503 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguide,” Jpn. J. Appl. Phys. 55(11), 110304 (2016).
[Crossref]

2015 (2)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

2014 (1)

2012 (3)

R. Kondou, C. Wang, A. Shigetou, and T. Suga, “Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding,” Microelectron. Reliab. 52(2), 342–346 (2012).
[Crossref]

L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for microphotonics devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

2011 (3)

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates,” Opt. Express 19(17), 15739–15749 (2011).
[Crossref] [PubMed]

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

2010 (1)

T. Shimatsu and M. Uomoto, “Atomic diffusion bonding of wafers with thin nanocrystalline metal films,” J. Vac. Sci. Technol. B 28(4), 706–714 (2010).
[Crossref]

2009 (1)

2008 (1)

R. Takigawa, E. Higuarshi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express 1, 112201 (2008).
[Crossref]

2007 (2)

R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2006 (2)

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89(3), 031914 (2006).
[Crossref]

2004 (2)

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
[Crossref]

2002 (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

2001 (1)

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]

1999 (1)

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74(16), 2387–2389 (1999).
[Crossref]

1998 (1)

H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon oxide by the surface activation method,” Sens. Actuators A Phys. 70(1-2), 164–170 (1998).
[Crossref]

1988 (1)

M. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitteruck, “Bonding of Silicon wafers for Silicon-on-Insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1981 (1)

C. Messmer and J. C. Bilello, “The surface energy of Si, GaAs, GaP,” J. Appl. Phys. 52(7), 4623–4629 (1981).
[Crossref]

Asano, T.

R. Takigawa, E. Higurashi, and T. Asano, “Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding,” Jpn. J. Appl. Phys. 57(6S1), 06HJ12 (2018).
[Crossref]

R. Takigawa, H. Kawano, H. Ikenoue, and T. Asano, “Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation,” Jpn. J. Appl. Phys. 56(8), 088002 (2017).
[Crossref]

H. Kawano, R. Takigawa, H. Ikenoue, and T. Asano, “Bonding of Lithium niobate to Silicon in ambient air using laser irradiation,” Jpn. J. Appl. Phys. 55(8S3), 08RB09 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguide,” Jpn. J. Appl. Phys. 55(11), 110304 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22(22), 27733–27738 (2014).
[Crossref] [PubMed]

Bernal, M. P.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Bilello, J. C.

C. Messmer and J. C. Bilello, “The surface energy of Si, GaAs, GaP,” J. Appl. Phys. 52(7), 4623–4629 (1981).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).

Caviglia, A.

M. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitteruck, “Bonding of Silicon wafers for Silicon-on-Insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).

Chang, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Chen, L.

Chen, T. N.

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Chung, T. R.

H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon oxide by the surface activation method,” Sens. Actuators A Phys. 70(1-2), 164–170 (1998).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Fujino, M.

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

Goetz, G.

M. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitteruck, “Bonding of Silicon wafers for Silicon-on-Insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Gunter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for microphotonics devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Günter, P.

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Higuarshi, E.

R. Takigawa, E. Higuarshi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express 1, 112201 (2008).
[Crossref]

R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).

Higurashi, E.

R. Takigawa, E. Higurashi, and T. Asano, “Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding,” Jpn. J. Appl. Phys. 57(6S1), 06HJ12 (2018).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Room-temperature transfer bonding of Lithium niobate thin film on micromachined silicon substrates with Au microbumps,” Sens. Actuators A Phys. 264, 274–281 (2017).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguide,” Jpn. J. Appl. Phys. 55(11), 110304 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22(22), 27733–27738 (2014).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates,” Opt. Express 19(17), 15739–15749 (2011).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

Ho, S. S.

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Horng, R. H.

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Hosoda, N.

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74(16), 2387–2389 (1999).
[Crossref]

Howlader, M. M. R.

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89(3), 031914 (2006).
[Crossref]

M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
[Crossref]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for microphotonics devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Ichiyanagi, Y.

J. Utsumi, K. Ide, and Y. Ichiyanagi, “Room-temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films,” Jpn. J. Appl. Phys. 55(2), 026503 (2016).
[Crossref]

Ide, K.

J. Utsumi, K. Ide, and Y. Ichiyanagi, “Room-temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films,” Jpn. J. Appl. Phys. 55(2), 026503 (2016).
[Crossref]

Iguchi, K.

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

Ikenoue, H.

R. Takigawa, H. Kawano, H. Ikenoue, and T. Asano, “Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation,” Jpn. J. Appl. Phys. 56(8), 088002 (2017).
[Crossref]

H. Kawano, R. Takigawa, H. Ikenoue, and T. Asano, “Bonding of Lithium niobate to Silicon in ambient air using laser irradiation,” Jpn. J. Appl. Phys. 55(8S3), 08RB09 (2016).
[Crossref]

Itoh, T.

M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
[Crossref]

Kawanishi, T.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Room-temperature transfer bonding of Lithium niobate thin film on micromachined silicon substrates with Au microbumps,” Sens. Actuators A Phys. 264, 274–281 (2017).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguide,” Jpn. J. Appl. Phys. 55(11), 110304 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22(22), 27733–27738 (2014).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates,” Opt. Express 19(17), 15739–15749 (2011).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).

Kawano, H.

R. Takigawa, H. Kawano, H. Ikenoue, and T. Asano, “Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation,” Jpn. J. Appl. Phys. 56(8), 088002 (2017).
[Crossref]

H. Kawano, R. Takigawa, H. Ikenoue, and T. Asano, “Bonding of Lithium niobate to Silicon in ambient air using laser irradiation,” Jpn. J. Appl. Phys. 55(8S3), 08RB09 (2016).
[Crossref]

Kim, M. J.

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89(3), 031914 (2006).
[Crossref]

Kim, T. H.

M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
[Crossref]

Kip, D.

Koechlin, M.

Kondou, R.

R. Kondou, C. Wang, A. Shigetou, and T. Suga, “Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding,” Microelectron. Reliab. 52(2), 342–346 (2012).
[Crossref]

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Lu, H. H.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Maeda, R.

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74(16), 2387–2389 (1999).
[Crossref]

H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon oxide by the surface activation method,” Sens. Actuators A Phys. 70(1-2), 164–170 (1998).
[Crossref]

Maszara, M. P.

M. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitteruck, “Bonding of Silicon wafers for Silicon-on-Insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

McKitteruck, J. B.

M. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitteruck, “Bonding of Silicon wafers for Silicon-on-Insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

Mercante, A. J.

Messmer, C.

C. Messmer and J. C. Bilello, “The surface energy of Si, GaAs, GaP,” J. Appl. Phys. 52(7), 4623–4629 (1981).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).

Mu, F.

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

Murakowski, J.

Nagy, J.

Nakazawa, H.

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

Okada, H.

M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
[Crossref]

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for microphotonics devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

F. Sulser, G. Poberaj, M. Koechlin, and P. Günter, “Photonic crystal structures in ion-sliced lithium niobate thin films,” Opt. Express 17(22), 20291–20300 (2009).
[Crossref] [PubMed]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Prather, D. W.

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Rabiei, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Rauch, J. Y.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Reano, R. M.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Rüter, C. E.

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Sawada, R.

R. Takigawa, E. Higuarshi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express 1, 112201 (2008).
[Crossref]

Schneider, G.

Shi, S.

Shigetou, A.

R. Kondou, C. Wang, A. Shigetou, and T. Suga, “Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding,” Microelectron. Reliab. 52(2), 342–346 (2012).
[Crossref]

Shimatsu, T.

T. Shimatsu and M. Uomoto, “Atomic diffusion bonding of wafers with thin nanocrystalline metal films,” J. Vac. Sci. Technol. B 28(4), 706–714 (2010).
[Crossref]

Shinada, S.

R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for microphotonics devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Suga, T.

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Room-temperature transfer bonding of Lithium niobate thin film on micromachined silicon substrates with Au microbumps,” Sens. Actuators A Phys. 264, 274–281 (2017).
[Crossref]

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

R. Kondou, C. Wang, A. Shigetou, and T. Suga, “Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding,” Microelectron. Reliab. 52(2), 342–346 (2012).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates,” Opt. Express 19(17), 15739–15749 (2011).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

R. Takigawa, E. Higuarshi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express 1, 112201 (2008).
[Crossref]

R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89(3), 031914 (2006).
[Crossref]

M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
[Crossref]

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74(16), 2387–2389 (1999).
[Crossref]

H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon oxide by the surface activation method,” Sens. Actuators A Phys. 70(1-2), 164–170 (1998).
[Crossref]

Sulser, F.

Suntsov, S.

Takagi, H.

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74(16), 2387–2389 (1999).
[Crossref]

H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon oxide by the surface activation method,” Sens. Actuators A Phys. 70(1-2), 164–170 (1998).
[Crossref]

Takahashi, Y.

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

Takigawa, R.

R. Takigawa, E. Higurashi, and T. Asano, “Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding,” Jpn. J. Appl. Phys. 57(6S1), 06HJ12 (2018).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Room-temperature transfer bonding of Lithium niobate thin film on micromachined silicon substrates with Au microbumps,” Sens. Actuators A Phys. 264, 274–281 (2017).
[Crossref]

R. Takigawa, H. Kawano, H. Ikenoue, and T. Asano, “Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation,” Jpn. J. Appl. Phys. 56(8), 088002 (2017).
[Crossref]

H. Kawano, R. Takigawa, H. Ikenoue, and T. Asano, “Bonding of Lithium niobate to Silicon in ambient air using laser irradiation,” Jpn. J. Appl. Phys. 55(8S3), 08RB09 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguide,” Jpn. J. Appl. Phys. 55(11), 110304 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method,” Opt. Express 22(22), 27733–27738 (2014).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates,” Opt. Express 19(17), 15739–15749 (2011).
[Crossref] [PubMed]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

R. Takigawa, E. Higuarshi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express 1, 112201 (2008).
[Crossref]

R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).

Ting, C. J.

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Tsai, H. Y.

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Ulliac, G.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Uomoto, M.

T. Shimatsu and M. Uomoto, “Atomic diffusion bonding of wafers with thin nanocrystalline metal films,” J. Vac. Sci. Technol. B 28(4), 706–714 (2010).
[Crossref]

Utsumi, J.

J. Utsumi, K. Ide, and Y. Ichiyanagi, “Room-temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films,” Jpn. J. Appl. Phys. 55(2), 026503 (2016).
[Crossref]

Volk, M. F.

Wang, C.

R. Kondou, C. Wang, A. Shigetou, and T. Suga, “Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding,” Microelectron. Reliab. 52(2), 342–346 (2012).
[Crossref]

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Wu, C. C.

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Wuu, D. S.

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Yao, P.

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Express (1)

R. Takigawa, E. Higuarshi, T. Suga, and R. Sawada, “Room-Temperature Bonding of Vertical-Cavity Surface-Emitting Laser Chips on Si Substrates Using Au Microbumps in Ambient Air,” Appl. Phys. Express 1, 112201 (2008).
[Crossref]

Appl. Phys. Lett. (3)

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74(16), 2387–2389 (1999).
[Crossref]

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89(3), 031914 (2006).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Passive alignment and mounting of LiNbO3 waveguide chips on Si substrates by low-temperature solid-state bonding of Au,” IEEE J. Sel. Top. Quantum Electron. 17(3), 652–658 (2011).
[Crossref]

IEICE Trans. Electron (1)

R. Takigawa, E. Higuarshi, T. Suga, S. Shinada, and T. Kawanishi, “Low-temperature Au-Au bonding for LiNbO3/Si structure achieved in ambient air,” IEICE Trans. Electron.  90, 145–146 (2007).

J. Appl. Phys. (2)

M. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitteruck, “Bonding of Silicon wafers for Silicon-on-Insulator,” J. Appl. Phys. 64(10), 4943–4950 (1988).
[Crossref]

C. Messmer and J. C. Bilello, “The surface energy of Si, GaAs, GaP,” J. Appl. Phys. 52(7), 4623–4629 (1981).
[Crossref]

J. Electrochem. Soc. (1)

M. M. R. Howlader, H. Okada, T. H. Kim, T. Itoh, and T. Suga, “Wafer level surface activated bonding tool for MEMS packaging,” J. Electrochem. Soc. 151(7), G461–G467 (2004).
[Crossref]

J. Micromech. Microeng. (1)

H. Takagi, R. Maeda, and T. Suga, “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” J. Micromech. Microeng. 11(4), 348–352 (2001).
[Crossref]

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

J. Vac. Sci. Technol. B (1)

T. Shimatsu and M. Uomoto, “Atomic diffusion bonding of wafers with thin nanocrystalline metal films,” J. Vac. Sci. Technol. B 28(4), 706–714 (2010).
[Crossref]

Jpn. J. Appl. Phys. (7)

C. C. Wu, R. H. Horng, D. S. Wuu, T. N. Chen, S. S. Ho, C. J. Ting, and H. Y. Tsai, “Thinning technology for lithium niobate wafer by surface activated bonding and chemical mechanical polishing,” Jpn. J. Appl. Phys. 45(4B), 3822–3827 (2006).
[Crossref]

R. Takigawa, H. Kawano, H. Ikenoue, and T. Asano, “Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation,” Jpn. J. Appl. Phys. 56(8), 088002 (2017).
[Crossref]

H. Kawano, R. Takigawa, H. Ikenoue, and T. Asano, “Bonding of Lithium niobate to Silicon in ambient air using laser irradiation,” Jpn. J. Appl. Phys. 55(8S3), 08RB09 (2016).
[Crossref]

R. Takigawa, E. Higurashi, T. Kawanishi, and T. Asano, “Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguide,” Jpn. J. Appl. Phys. 55(11), 110304 (2016).
[Crossref]

T. Suga, F. Mu, M. Fujino, Y. Takahashi, H. Nakazawa, and K. Iguchi, “Silicon carbide wafer bonding by modified surface activated bonding method,” Jpn. J. Appl. Phys. 54(3), 030214 (2015).
[Crossref]

J. Utsumi, K. Ide, and Y. Ichiyanagi, “Room-temperature bonding of SiO2 and SiO2 by surface activated bonding method using Si ultrathin films,” Jpn. J. Appl. Phys. 55(2), 026503 (2016).
[Crossref]

R. Takigawa, E. Higurashi, and T. Asano, “Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding,” Jpn. J. Appl. Phys. 57(6S1), 06HJ12 (2018).
[Crossref]

Laser Photon. Rev. (1)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photon. Rev. 12(4), 1700256 (2018).

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for microphotonics devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Microelectron. Reliab. (1)

R. Kondou, C. Wang, A. Shigetou, and T. Suga, “Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding,” Microelectron. Reliab. 52(2), 342–346 (2012).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (1)

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Chang, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).

Sens. Actuators A Phys. (2)

H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon oxide by the surface activation method,” Sens. Actuators A Phys. 70(1-2), 164–170 (1998).
[Crossref]

R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, “Room-temperature transfer bonding of Lithium niobate thin film on micromachined silicon substrates with Au microbumps,” Sens. Actuators A Phys. 264, 274–281 (2017).
[Crossref]

Other (1)

R. G. Hunsberger, “Integrated Optics Theory and Technology”, Chap. 5, pp. 83–86, Springer-Verlag, New York, 1985.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the room-temperature SAB method using Si nanoadhesive layer.
Fig. 2
Fig. 2 Photograph of LN and SiO2/Si hybrid wafers produced using room-temperature bonding with Si nanoadhesive layer.
Fig. 3
Fig. 3 (a) Photograph of diced 0.5 × 0.5 mm2 dies. (b) Photograph of bonded LN on SiO2/Si wafer with crack produced by blade insertion.
Fig. 4
Fig. 4 Cross-sectional SEM image of LNOI/Si hybrid wafer.
Fig. 5
Fig. 5 Cross-sectional high-resolution TEM image of LN/SiO2 bonding interface.
Fig. 6
Fig. 6 Compositional distribution of Nb, Si, O, and Ar atoms across bonding interface between LN and SiO2.
Fig. 7
Fig. 7 (a) LNOI ridged waveguides formed on Si wafer. (b) Magnified view of region marked by red circle in panel (a).
Fig. 8
Fig. 8 Near-field pattern of fundamental mode of guided light in LNOI waveguide; (a) TE mode (b) TM mode.

Metrics