M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref]
[PubMed]
M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]
P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25(11), 12926–12934 (2017).
[Crossref]
[PubMed]
F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]
Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41(17), 4146–4149 (2016).
[Crossref]
[PubMed]
C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
[Crossref]
[PubMed]
K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
[Crossref]
[PubMed]
J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]
J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]
J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]
R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref]
[PubMed]
A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]
[PubMed]
J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]
M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref]
[PubMed]
D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]
S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref]
[PubMed]
H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref]
[PubMed]
F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]
[PubMed]
M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]
M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref]
[PubMed]
E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref]
[PubMed]
J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]
J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]
J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]
J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]
P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25(11), 12926–12934 (2017).
[Crossref]
[PubMed]
A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref]
[PubMed]
F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]
A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref]
[PubMed]
M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref]
[PubMed]
I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]
A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref]
[PubMed]
F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]
A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]
C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]
J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]
J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]
J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]
D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]
I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]
[PubMed]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]
[PubMed]
M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]
A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref]
[PubMed]
F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]
A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref]
[PubMed]
D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]
C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]
D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]
M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]
R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref]
[PubMed]
F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]
A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]
[PubMed]
H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref]
[PubMed]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]
M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]
M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41(17), 4146–4149 (2016).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref]
[PubMed]
A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]
[PubMed]
M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref]
[PubMed]
E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref]
[PubMed]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]
M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref]
[PubMed]
F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref]
[PubMed]
F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]
M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]
C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]
P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]
I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]
J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]
J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]
J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]
J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]
H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref]
[PubMed]
R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref]
[PubMed]
A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref]
[PubMed]
S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref]
[PubMed]
M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref]
[PubMed]
D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]
M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref]
[PubMed]
L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
[Crossref]
[PubMed]
J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref]
[PubMed]
K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
[Crossref]
[PubMed]
E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref]
[PubMed]
M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref]
[PubMed]
P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25(11), 12926–12934 (2017).
[Crossref]
[PubMed]
A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref]
[PubMed]
Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41(17), 4146–4149 (2016).
[Crossref]
[PubMed]
S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]