Abstract

This paper reports a digital micro-mirror device (DMD)-enabled real-time multi-channel biosensing system based on angular interrogation surface plasmon resonance (SPR). In the experiments, angular scanning is achieved by a DMD that facilitates SPR measurements using a single-point photodetector. In the four-channel measurement setup, real-time monitoring of bovine serum albumin (BSA) and anti-BSA binding interactions is performed at various concentration levels. The experimental results have verified that the system has a resolution of 3.54 × 10−6 RIU (refractive index unit); and a detection limit of 9 ng/mL. The new DMD-based SPR interrogation system presents a new design route for practical solid-state SPR biosensing with a user-selectable range of interrogation, enhanced signal-to-noise ratio, and fast data throughput.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme

Chi Lok Wong, George Chung Kit Chen, Beng Koon Ng, Shuchi Agarwal, Zhiping Lin, Peng Chen, and Ho Pui Ho
Opt. Express 19(20) 18965-18978 (2011)

Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications

R. Otupiri, E. K. Akowuah, and S. Haxha
Opt. Express 23(12) 15716-15727 (2015)

Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration

S. Y. Wu, H. P. Ho, W. C. Law, Chinlon Lin, and S. K. Kong
Opt. Lett. 29(20) 2378-2380 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Electromagnetic theory of surface plasmons,” in Surface plasmon resonance based sensors (Springer, 2006), pp. 3–44.
  2. Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524(11), 637–662 (2012).
    [Crossref]
  3. S. Rodriguez-Mozaz, M. J. Lopez de Alda, and D. Barceló, “Biosensors as useful tools for environmental analysis and monitoring,” Anal. Bioanal. Chem. 386(4), 1025–1041 (2006).
    [Crossref] [PubMed]
  4. J.-F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sens 2(1), 16–30 (2017).
    [Crossref] [PubMed]
  5. L. D. Mello and L. T. Kubota, “Review of the use of biosensors as analytical tools in the food and drink industries,” Food Chem. 77(2), 237–256 (2002).
    [Crossref]
  6. J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
    [Crossref] [PubMed]
  7. G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
    [Crossref] [PubMed]
  8. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  9. R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
    [Crossref]
  10. P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
    [Crossref]
  11. K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
    [Crossref]
  12. R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200(1-2), 121–133 (1997).
    [Crossref] [PubMed]
  13. H. Ho and W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
    [Crossref]
  14. C.-M. Wu and M.-C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12(15), 3509–3514 (2004).
    [Crossref] [PubMed]
  15. F.-C. Loo, S.-P. Ng, C.-M. L. Wu, and S. K. Kong, “An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening,” Sens. Actuators B Chem. 198, 416–423 (2014).
    [Crossref]
  16. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
    [Crossref] [PubMed]
  17. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
    [Crossref] [PubMed]
  18. G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
    [Crossref]
  19. X. Guo, “Fe3O4@ Au nanoparticles enhanced surface plasmon resonance for ultrasensitive immunoassay,” Sens. Actuators B Chem. 205, 276–280 (2014).
    [Crossref]
  20. A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
    [Crossref] [PubMed]
  21. E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Zeitschrift für Physik A Hadrons and nuclei 241(4), 313–324 (1971).
    [Crossref]
  22. K. Johansen, R. Stålberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
    [Crossref]
  23. R. Khrystosenko, “Optimization of the surface plasmon resonance minimum detection algorithm for improvement of method sensitivity,” Semiconductor Physics Quantum Electronics & Optoelectronics (2015).
  24. C. L. Wong, G. C. K. Chen, B. K. Ng, S. Agarwal, Z. Lin, P. Chen, and H. P. Ho, “Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme,” Opt. Express 19(20), 18965–18978 (2011).
    [Crossref] [PubMed]
  25. H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
    [Crossref]
  26. U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
    [PubMed]
  27. D. G. Myszka, “Analysis of small-molecule interactions using Biacore S51 technology,” Anal. Biochem. 329(2), 316–323 (2004).
    [Crossref] [PubMed]
  28. E.-H. Yoo and S.-Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors (Basel) 10(5), 4558–4576 (2010).
    [Crossref] [PubMed]

2017 (2)

2016 (2)

P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
[Crossref]

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

2014 (3)

F.-C. Loo, S.-P. Ng, C.-M. L. Wu, and S. K. Kong, “An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening,” Sens. Actuators B Chem. 198, 416–423 (2014).
[Crossref]

X. Guo, “Fe3O4@ Au nanoparticles enhanced surface plasmon resonance for ultrasensitive immunoassay,” Sens. Actuators B Chem. 205, 276–280 (2014).
[Crossref]

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

2012 (1)

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524(11), 637–662 (2012).
[Crossref]

2011 (1)

2010 (1)

E.-H. Yoo and S.-Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors (Basel) 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (3)

B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
[Crossref] [PubMed]

S. Rodriguez-Mozaz, M. J. Lopez de Alda, and D. Barceló, “Biosensors as useful tools for environmental analysis and monitoring,” Anal. Bioanal. Chem. 386(4), 1025–1041 (2006).
[Crossref] [PubMed]

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

2004 (2)

2003 (1)

H. Ho and W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[Crossref]

2002 (2)

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

L. D. Mello and L. T. Kubota, “Review of the use of biosensors as analytical tools in the food and drink industries,” Food Chem. 77(2), 237–256 (2002).
[Crossref]

2000 (2)

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

K. Johansen, R. Stålberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

1997 (1)

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200(1-2), 121–133 (1997).
[Crossref] [PubMed]

1991 (1)

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

1971 (1)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Zeitschrift für Physik A Hadrons and nuclei 241(4), 313–324 (1971).
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

1902 (1)

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
[Crossref]

Agarwal, S.

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Bahrami, A.

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

Barceló, D.

S. Rodriguez-Mozaz, M. J. Lopez de Alda, and D. Barceló, “Biosensors as useful tools for environmental analysis and monitoring,” Anal. Bioanal. Chem. 386(4), 1025–1041 (2006).
[Crossref] [PubMed]

Chen, G. C. K.

Chen, P.

Chung, C. W.

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Danielson, U. H.

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Egner, U.

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Fägerstam, L.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Fält, A.

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200(1-2), 121–133 (1997).
[Crossref] [PubMed]

Grilli, M.

Guo, X.

X. Guo, “Fe3O4@ Au nanoparticles enhanced surface plasmon resonance for ultrasensitive immunoassay,” Sens. Actuators B Chem. 205, 276–280 (2014).
[Crossref]

He, H.

Hennig, M.

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Ho, H.

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

H. Ho and W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[Crossref]

Ho, H. P.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524(11), 637–662 (2012).
[Crossref]

C. L. Wong, G. C. K. Chen, B. K. Ng, S. Agarwal, Z. Lin, P. Chen, and H. P. Ho, “Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme,” Opt. Express 19(20), 18965–18978 (2011).
[Crossref] [PubMed]

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

Hu, G.

Huang, Y.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524(11), 637–662 (2012).
[Crossref]

Hubbard, R. E.

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Ivarsson, B.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

K. Johansen, R. Stålberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Johnsson, B.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Jönsson, U.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Kabashin, A. V.

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524(11), 637–662 (2012).
[Crossref]

Karlsson, R.

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200(1-2), 121–133 (1997).
[Crossref] [PubMed]

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Kong, S.

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

Kong, S. K.

F.-C. Loo, S.-P. Ng, C.-M. L. Wu, and S. K. Kong, “An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening,” Sens. Actuators B Chem. 198, 416–423 (2014).
[Crossref]

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524(11), 637–662 (2012).
[Crossref]

Kretschmann, E.

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Zeitschrift für Physik A Hadrons and nuclei 241(4), 313–324 (1971).
[Crossref]

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Kubota, L. T.

L. D. Mello and L. T. Kubota, “Review of the use of biosensors as analytical tools in the food and drink industries,” Food Chem. 77(2), 237–256 (2002).
[Crossref]

Lam, W.

H. Ho and W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[Crossref]

Law, W.

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

Lee, S.-Y.

E.-H. Yoo and S.-Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors (Basel) 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

Liedberg, B.

K. Johansen, R. Stålberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Lim, H. N.

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

Lin, C.

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

Lin, Z.

Lipson, S. G.

Liu, X.

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

Löfås, S.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Loo, F.-C.

F.-C. Loo, S.-P. Ng, C.-M. L. Wu, and S. K. Kong, “An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening,” Sens. Actuators B Chem. 198, 416–423 (2014).
[Crossref]

Lopez de Alda, M. J.

S. Rodriguez-Mozaz, M. J. Lopez de Alda, and D. Barceló, “Biosensors as useful tools for environmental analysis and monitoring,” Anal. Bioanal. Chem. 386(4), 1025–1041 (2006).
[Crossref] [PubMed]

Lundh, K.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

K. Johansen, R. Stålberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Mahdi, M. A.

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

Masson, J.-F.

J.-F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sens 2(1), 16–30 (2017).
[Crossref] [PubMed]

Mello, L. D.

L. D. Mello and L. T. Kubota, “Review of the use of biosensors as analytical tools in the food and drink industries,” Food Chem. 77(2), 237–256 (2002).
[Crossref]

Myszka, D. G.

D. G. Myszka, “Analysis of small-molecule interactions using Biacore S51 technology,” Anal. Biochem. 329(2), 316–323 (2004).
[Crossref] [PubMed]

Nar, H.

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Nenninger, G. G.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

Ng, B. K.

Ng, S.-P.

F.-C. Loo, S.-P. Ng, C.-M. L. Wu, and S. K. Kong, “An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening,” Sens. Actuators B Chem. 198, 416–423 (2014).
[Crossref]

Noor, A. S.

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

Pao, M.-C.

Persson, B.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Piegari, A.

Piliarik, M.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009).
[Crossref] [PubMed]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Ran, B.

Renaud, J.-P.

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Rodriguez-Mozaz, S.

S. Rodriguez-Mozaz, M. J. Lopez de Alda, and D. Barceló, “Biosensors as useful tools for environmental analysis and monitoring,” Anal. Bioanal. Chem. 386(4), 1025–1041 (2006).
[Crossref] [PubMed]

Rönnberg, I.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Roos, H.

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Sadrolhosseini, A. R.

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

Shao, J.

Singh, P.

P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
[Crossref]

Stålberg, R.

K. Johansen, R. Stålberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Sytchkova, A.

Talib, Z. A.

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

Wong, C. L.

Wong, S.

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

Wood, R. W.

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
[Crossref]

Wu, C.-M.

Wu, C.-M. L.

F.-C. Loo, S.-P. Ng, C.-M. L. Wu, and S. K. Kong, “An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening,” Sens. Actuators B Chem. 198, 416–423 (2014).
[Crossref]

Wu, S.

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

Yoo, E.-H.

E.-H. Yoo and S.-Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors (Basel) 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

Zhao, J.

ACS Sens (1)

J.-F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sens 2(1), 16–30 (2017).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

S. Rodriguez-Mozaz, M. J. Lopez de Alda, and D. Barceló, “Biosensors as useful tools for environmental analysis and monitoring,” Anal. Bioanal. Chem. 386(4), 1025–1041 (2006).
[Crossref] [PubMed]

Anal. Biochem. (1)

D. G. Myszka, “Analysis of small-molecule interactions using Biacore S51 technology,” Anal. Biochem. 329(2), 316–323 (2004).
[Crossref] [PubMed]

Ann. Phys. (1)

Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524(11), 637–662 (2012).
[Crossref]

Biotechniques (1)

U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfås, B. Persson, H. Roos, I. Rönnberg, and et al.., “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques 11(5), 620–627 (1991).
[PubMed]

Food Chem. (1)

L. D. Mello and L. T. Kubota, “Review of the use of biosensors as analytical tools in the food and drink industries,” Food Chem. 77(2), 237–256 (2002).
[Crossref]

J. Immunol. Methods (1)

R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200(1-2), 121–133 (1997).
[Crossref] [PubMed]

Lond. Edinb. Dublin Philos. Mag. J. Sci. (1)

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Lond. Edinb. Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
[Crossref]

Meas. Sci. Technol. (2)

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002).
[Crossref]

K. Johansen, R. Stålberg, I. Lundström, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000).
[Crossref]

Nat. Rev. Drug Discov. (1)

J.-P. Renaud, C. W. Chung, U. H. Danielson, U. Egner, M. Hennig, R. E. Hubbard, and H. Nar, “Biophysics in drug discovery: impact, challenges and opportunities,” Nat. Rev. Drug Discov. 15(10), 679–698 (2016).
[Crossref] [PubMed]

Opt. Express (5)

PLoS One (1)

A. R. Sadrolhosseini, A. S. Noor, A. Bahrami, H. N. Lim, Z. A. Talib, and M. A. Mahdi, “Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique,” PLoS One 9(4), e93962 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Sens. Actuators B Chem. (5)

H. Ho and W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[Crossref]

F.-C. Loo, S.-P. Ng, C.-M. L. Wu, and S. K. Kong, “An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening,” Sens. Actuators B Chem. 198, 416–423 (2014).
[Crossref]

P. Singh, “SPR biosensors: historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
[Crossref]

X. Guo, “Fe3O4@ Au nanoparticles enhanced surface plasmon resonance for ultrasensitive immunoassay,” Sens. Actuators B Chem. 205, 276–280 (2014).
[Crossref]

H. Ho, W. Law, S. Wu, X. Liu, S. Wong, C. Lin, and S. Kong, “Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique,” Sens. Actuators B Chem. 114(1), 80–84 (2006).
[Crossref]

Sensors (Basel) (1)

E.-H. Yoo and S.-Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors (Basel) 10(5), 4558–4576 (2010).
[Crossref] [PubMed]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Zeitschrift für Physik A Hadrons and nuclei (1)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Zeitschrift für Physik A Hadrons and nuclei 241(4), 313–324 (1971).
[Crossref]

Other (2)

R. Khrystosenko, “Optimization of the surface plasmon resonance minimum detection algorithm for improvement of method sensitivity,” Semiconductor Physics Quantum Electronics & Optoelectronics (2015).

J. Homola, “Electromagnetic theory of surface plasmons,” in Surface plasmon resonance based sensors (Springer, 2006), pp. 3–44.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical configuration of the DMD-enabled SPR system based on angular interrogation of the Kretchmann scheme. L1, L2, L3, L4: spherical lens; CL1, CL2: cylindrical lens; PB: polarizing beam-splitter; D1, D2: single-point detectors
Fig. 2
Fig. 2 (a) SPR data (dotted lines) measured for glycerol-water solutions with concentrations of 0% (water), 0.0625%, 0.125%, 0.25%, 0.5%, 1%, 2%, 4% and 8% in weight ratio and the curves fitted by 3rd-order polynomials (solid lines); (b) SPR RA shift plotted against the refractive index of glycerol-water samples with different glycerol concentration levels.
Fig. 3
Fig. 3 SPR data (dotted lines) measured for glycerol-water solutions with concentrations of 1%, 2%, 4% and 8% in weight ratio and the curves fitted by 3rd-order polynomials (solid lines).
Fig. 4
Fig. 4 Simultaneous multi-channel real-time monitoring of anti-BSA surface functionalization using a single sensing head.
Fig. 5
Fig. 5 (a) Simultaneous quantitative real-time monitoring of antigen-antibody interactions in Channel 1 – 4; (b) SPR responses for BSA/anti-BSA binding at various concentration levels.
Fig. 6
Fig. 6 Repeatability experiment where anti-BSA antibody and NaOH are injected to flow channel for measurement for three times.

Tables (1)

Tables Icon

Table 1 RAs of the multi-channel measurements

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S=Δθ/Δn
R=S.D./S

Metrics