Abstract

We propose off-axis virtual-image display and camera systems, which integrate a vertically-standing holographic off-axis mirror, blur-compensation optical systems, and digital imaging devices. In the system, the holographic mirror is used for an off-axis reflector, which realizes an upright and thin screen for virtual-image formation. By combining it with a display unit, an off-axis virtual-image display is realized, where the virtual image can be seen behind the upright holographic mirror. Simultaneously, by combining it with a camera unit, an off-axis camera is implemented, which realizes frontal shooting of objects by a camera placed at an off-axis position. Since both the off-axis display and the camera can be implemented by a single holographic mirror, it can be applied to a two-way visual-telecommunication system with a thin screen, which implements eye contact and the observer--image distance. A problem with the proposed system is image blur, which is caused by the chromatic dispersion of the holographic mirror. To solve this, we designed optical blur-compensation systems using a diffractive optical element and a diffuser or a lens. Experimental results verify the concept of the proposed systems with clarifying the effect of designed blur-compensation methods.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Autostereoscopic transparent display using a wedge light guide and a holographic optical element: implementation and results

Thomas Crespel, Patrick Reuter, Adrian Travis, Yves Gentet, and Xavier Granier
Appl. Opt. 58(34) G293-G299 (2019)

3D touchable holographic light-field display

Masahiro Yamaguchi and Ryo Higashida
Appl. Opt. 55(3) A178-A183 (2016)

Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements

Keehoon Hong, Jiwoon Yeom, Changwon Jang, Gang Li, Jisoo Hong, and Byoungho Lee
Opt. Express 22(12) 14363-14374 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Withrington, “Optical display systems utilizing holographic lenses,” US Patent, 3940204 A (1975).
  2. R. A. Farrar, “Helmet-mounted holographic aiming sight,” US Patent, 3633988 A (1970).
  3. I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
    [Crossref]
  4. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
    [Crossref]
  5. H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23, 32025–32034 (2015).
    [Crossref] [PubMed]
  6. J. A. Piao, G. Li, M. L. Piao, and N. Kim, “Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer,” J. Opt. Soc. Korea 17, 242–248 (2013).
    [Crossref]
  7. M. K. Hedili, M. O. Freeman, and H. Urey, “Transmission characteristics of a bidirectional transparent screen based on reflective microlenses,” Opt. Express 21, 24636–24646 (2013).
    [Crossref] [PubMed]
  8. M.-L. Piao, K.-C. Kwon, H.-J. Kang, K.-Y. Lee, and N. Kim, “Full-color holographic diffuser using time-scheduled iterative exposure,” Appl. Opt. 54, 5252–5259 (2015).
    [Crossref] [PubMed]
  9. G. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt. 55, A71–A85 (2016).
    [Crossref] [PubMed]
  10. K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
    [Crossref] [PubMed]
  11. M. Yamaguchi, “Light-field and holographic three-dimensional displays,” J. Opt. Soc. Am. A 33, 2348–2364 (2016).
    [Crossref]
  12. T. Nakamura and M. Yamaguchi, “Rapid calibration of a projection-type holographic light-field display using hierarchically upconverted binary sinusoidal patterns,” Appl. Opt. 56, 9520–9525 (2017).
    [Crossref] [PubMed]
  13. M. Yamaguchi and R. Higashida, “3D touchable holographic light-field display,” Appl. Opt. 55, A178–A183 (2016).
    [Crossref] [PubMed]
  14. M. Zhou, O. Matoba, Y. Kitagawa, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Fabrication of an integrated holographic imaging element for a three-dimensional eye-gaze detection system,” Appl. Opt. 49, 3780–3785 (2010).
    [Crossref] [PubMed]
  15. T. Kasezawa, H. Horimai, H. Tabuchi, and T. Shimura, “Holographic window for solar power generation,” Opt. Rev. 23, 997–1003 (2016).
    [Crossref]
  16. V. Bavigadda, R. Jallapuram, E. Mihaylova, and V. Toal, “Electronic speckle-pattern interferometer using holographic optical elements for vibration measurements,” Opt. Lett. 35, 3273–3275 (2010).
    [Crossref] [PubMed]
  17. M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser. Eng. 73, 33–39 (2015).
    [Crossref]
  18. P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
    [Crossref] [PubMed]
  19. D. Ochi, A. Kamera, K. Takahashi, M. Makiguchi, and K. Takeuchi, “VR technologies for rich sports experience,” in SIGGRAPH (ACM, 2016), pp. 21.
  20. T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.
  21. Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
    [Crossref]
  22. M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph. 29, 1–12 (2010).
    [Crossref]
  23. S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
    [Crossref]
  24. D. J. De Bitetto, “White-light viewing of surface holograms by simple dispersion compensation,” Appl. Phys. Lett. 9, 417–418 (1966).
    [Crossref]
  25. N. F. Hartman, “Heads-up display with holographic dispersion correcting,” US Patent, 4613200 A (1986).
  26. T. Kubota, “Image sharpening of Lippmann hologram by compensation of wavelength dispersion,” Proc. SPIE 1051, 12–17 (1989).
    [Crossref]
  27. C. B. Burckhardt, “Display of holograms in white light,” Bell Syst. Tech. J. 45, 1841–1844 (1966).
    [Crossref]
  28. P. G. Boj, M. Pardo, and J. A. Quintana, “Display of ordinary transmission holograms with a white light source,” Appl. Opt. 25, 4146–4149 (1986).
    [Crossref] [PubMed]
  29. J. N. Latta, “Analysis of multiple hologram optical elements with low dispersion and low aberrations,” Appl. Opt. 11, 1686–1696 (1972).
    [Crossref] [PubMed]
  30. H. Madjii-Zolbanine and C. Froehly, “Holographic correction of both chromatic and spherical aberrations of single glass lenses,” Appl. Opt. 18, 2385–2393 (1979).
    [Crossref]
  31. A. Klein, “Dispersion compensation for reflection holography,” Master Thesis, Massachusetts Institute of Technology, (1996).
  32. M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31, 217–222 (1992).
    [Crossref] [PubMed]
  33. M. Klug, M. Holzbach, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” US Patent, US6330088B1 (1998).
  34. D. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Holographic Printer,” US Patent, US7800803B2 (1999).
  35. K. Hong, S. Park, J. Yeom, J. Kim, N. Chen, K. Pyun, C. Choi, S. Kim, J. An, H.-S. Lee, U. Chung, and B. Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
    [Crossref] [PubMed]
  36. J. Jeong, J. Yeom, C. Jang, C.-K. Lee, K. Hong, and B. Lee, “Viewing characteristics improved integral imaging system using holographic printing technique,” in Imaging and Applied Optics (OSA, 2015), paper JT5A.1.
    [Crossref]
  37. T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
    [Crossref]
  38. W. Nishi and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
    [Crossref]
  39. K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

2017 (1)

2016 (8)

M. Yamaguchi and R. Higashida, “3D touchable holographic light-field display,” Appl. Opt. 55, A178–A183 (2016).
[Crossref] [PubMed]

G. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

M. Yamaguchi, “Light-field and holographic three-dimensional displays,” J. Opt. Soc. Am. A 33, 2348–2364 (2016).
[Crossref]

T. Kasezawa, H. Horimai, H. Tabuchi, and T. Shimura, “Holographic window for solar power generation,” Opt. Rev. 23, 997–1003 (2016).
[Crossref]

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

2015 (3)

2014 (1)

W. Nishi and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

2013 (3)

2012 (1)

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

2010 (4)

M. Zhou, O. Matoba, Y. Kitagawa, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Fabrication of an integrated holographic imaging element for a three-dimensional eye-gaze detection system,” Appl. Opt. 49, 3780–3785 (2010).
[Crossref] [PubMed]

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

V. Bavigadda, R. Jallapuram, E. Mihaylova, and V. Toal, “Electronic speckle-pattern interferometer using holographic optical elements for vibration measurements,” Opt. Lett. 35, 3273–3275 (2010).
[Crossref] [PubMed]

M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph. 29, 1–12 (2010).
[Crossref]

2009 (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

2001 (1)

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[Crossref]

1992 (1)

1989 (1)

T. Kubota, “Image sharpening of Lippmann hologram by compensation of wavelength dispersion,” Proc. SPIE 1051, 12–17 (1989).
[Crossref]

1986 (1)

1979 (1)

1972 (1)

1966 (2)

C. B. Burckhardt, “Display of holograms in white light,” Bell Syst. Tech. J. 45, 1841–1844 (1966).
[Crossref]

D. J. De Bitetto, “White-light viewing of surface holograms by simple dispersion compensation,” Appl. Phys. Lett. 9, 417–418 (1966).
[Crossref]

Aburakawa, Y.

T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

An, J.

Bablumian, A.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Bavigadda, V.

Bimber, O.

M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph. 29, 1–12 (2010).
[Crossref]

Blanche, P.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Boj, P. G.

Brotherton-Ratcliffe, D.

D. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Holographic Printer,” US Patent, US7800803B2 (1999).

Burckhardt, C. B.

C. B. Burckhardt, “Display of holograms in white light,” Bell Syst. Tech. J. 45, 1841–1844 (1966).
[Crossref]

Chen, N.

Cho, J.

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Choi, C.

Christenson, C.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Chung, U.

De Bitetto, D. J.

D. J. De Bitetto, “White-light viewing of surface holograms by simple dispersion compensation,” Appl. Phys. Lett. 9, 417–418 (1966).
[Crossref]

Endo, T.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[Crossref]

Farrar, R. A.

R. A. Farrar, “Helmet-mounted holographic aiming sight,” US Patent, 3633988 A (1970).

Ferdman, A.

M. Klug, M. Holzbach, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” US Patent, US6330088B1 (1998).

Flores, D.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Freeman, M. O.

Froehly, C.

Grichine, M.

D. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Holographic Printer,” US Patent, US7800803B2 (1999).

Grosse, M.

M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph. 29, 1–12 (2010).
[Crossref]

Grundhöfer, A.

M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph. 29, 1–12 (2010).
[Crossref]

Gu, T.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Hartman, N. F.

N. F. Hartman, “Heads-up display with holographic dispersion correcting,” US Patent, 4613200 A (1986).

Hedili, M. K.

Higashida, R.

Holzbach, M.

M. Klug, M. Holzbach, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” US Patent, US6330088B1 (1998).

Honda, T.

Hong, K.

Horimai, H.

T. Kasezawa, H. Horimai, H. Tabuchi, and T. Shimura, “Holographic window for solar power generation,” Opt. Rev. 23, 997–1003 (2016).
[Crossref]

Hsieh, P.-Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Hsieh, W.-Y.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Huang, Y.-P.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Ichihashi, Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

Igarashi, S.

T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.

Jallapuram, R.

Jang, C.

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

J. Jeong, J. Yeom, C. Jang, C.-K. Lee, K. Hong, and B. Lee, “Viewing characteristics improved integral imaging system using holographic printing technique,” in Imaging and Applied Optics (OSA, 2015), paper JT5A.1.
[Crossref]

Jang, G.

Jeong, J.

G. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

J. Jeong, J. Yeom, C. Jang, C.-K. Lee, K. Hong, and B. Lee, “Viewing characteristics improved integral imaging system using holographic printing technique,” in Imaging and Applied Optics (OSA, 2015), paper JT5A.1.
[Crossref]

Ji, Y.-M.

Kamera, A.

D. Ochi, A. Kamera, K. Takahashi, M. Makiguchi, and K. Takeuchi, “VR technologies for rich sports experience,” in SIGGRAPH (ACM, 2016), pp. 21.

Kang, H.-J.

Kasai, I.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[Crossref]

Kasezawa, T.

T. Kasezawa, H. Horimai, H. Tabuchi, and T. Shimura, “Holographic window for solar power generation,” Opt. Rev. 23, 997–1003 (2016).
[Crossref]

Kathaperumal, M.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Kim, H.-J.

Kim, J.

Kim, N.

Kim, S.

Kim, S.-B.

Kim, S.-H.

Kimura, S.

T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.

Kitagawa, Y.

Klein, A.

A. Klein, “Dispersion compensation for reflection holography,” Master Thesis, Massachusetts Institute of Technology, (1996).

Klug, M.

M. Klug, M. Holzbach, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” US Patent, US6330088B1 (1998).

Kosaka, N.

Kubota, T.

T. Kubota, “Image sharpening of Lippmann hologram by compensation of wavelength dispersion,” Proc. SPIE 1051, 12–17 (1989).
[Crossref]

Kumar, M.

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser. Eng. 73, 33–39 (2015).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

Kwon, K.-C.

Latta, J. N.

Lee, B.

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

G. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

K. Hong, S. Park, J. Yeom, J. Kim, N. Chen, K. Pyun, C. Choi, S. Kim, J. An, H.-S. Lee, U. Chung, and B. Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[Crossref] [PubMed]

J. Jeong, J. Yeom, C. Jang, C.-K. Lee, K. Hong, and B. Lee, “Viewing characteristics improved integral imaging system using holographic printing technique,” in Imaging and Applied Optics (OSA, 2015), paper JT5A.1.
[Crossref]

Lee, C.-K.

G. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

J. Jeong, J. Yeom, C. Jang, C.-K. Lee, K. Hong, and B. Lee, “Viewing characteristics improved integral imaging system using holographic printing technique,” in Imaging and Applied Optics (OSA, 2015), paper JT5A.1.
[Crossref]

Lee, H.-S.

Lee, K.-Y.

Lee, S.

G. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Li, B.

Li, G.

Lin, W.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Luo, J.

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

Luo, Y.

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

Lv, Y.

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

Madjii-Zolbanine, H.

Makiguchi, M.

D. Ochi, A. Kamera, K. Takahashi, M. Makiguchi, and K. Takeuchi, “VR technologies for rich sports experience,” in SIGGRAPH (ACM, 2016), pp. 21.

Matoba, O.

Matsumoto, T.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

Matsushima, K.

W. Nishi and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

Mihaylova, E.

Miyamoto, O.

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

Mizuno, A.

Moon, S.

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

Nakamura, T.

T. Nakamura and M. Yamaguchi, “Rapid calibration of a projection-type holographic light-field display using hierarchically upconverted binary sinusoidal patterns,” Appl. Opt. 56, 9520–9525 (2017).
[Crossref] [PubMed]

T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

Nishi, W.

W. Nishi and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

Norwood, R. A.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Ochi, D.

D. Ochi, A. Kamera, K. Takahashi, M. Makiguchi, and K. Takeuchi, “VR technologies for rich sports experience,” in SIGGRAPH (ACM, 2016), pp. 21.

Ohyama, N.

Oi, R.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

Okui, M.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Pardo, M.

Park, J.-H.

Park, S.

Peyghambarian, N.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Piao, J. A.

Piao, M. L.

Piao, M.-L.

Pyun, K.

Quintana, J. A.

Rachwal, B.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Rodin, A.

D. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Holographic Printer,” US Patent, US7800803B2 (1999).

Sasaki, H.

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Senoh, T.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

Shakher, C.

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser. Eng. 73, 33–39 (2015).
[Crossref]

Shimura, T.

T. Kasezawa, H. Horimai, H. Tabuchi, and T. Shimura, “Holographic window for solar power generation,” Opt. Rev. 23, 997–1003 (2016).
[Crossref]

Siddiqui, O.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Tabuchi, H.

T. Kasezawa, H. Horimai, H. Tabuchi, and T. Shimura, “Holographic window for solar power generation,” Opt. Rev. 23, 997–1003 (2016).
[Crossref]

Takahashi, K.

D. Ochi, A. Kamera, K. Takahashi, M. Makiguchi, and K. Takeuchi, “VR technologies for rich sports experience,” in SIGGRAPH (ACM, 2016), pp. 21.

T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.

Takahashi, S.

T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.

Takeuchi, K.

D. Ochi, A. Kamera, K. Takahashi, M. Makiguchi, and K. Takeuchi, “VR technologies for rich sports experience,” in SIGGRAPH (ACM, 2016), pp. 21.

Takizawa, Y.

Tanijiri, Y.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[Crossref]

Thomas, J.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Toal, V.

Ueda, H.

Urey, H.

Vergnes, F. M.

D. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Holographic Printer,” US Patent, US7800803B2 (1999).

Voorakaranam, R.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Wakunami, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

Wang, P.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Wetztein, G.

M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph. 29, 1–12 (2010).
[Crossref]

Withrington, R. J.

R. J. Withrington, “Optical display systems utilizing holographic lenses,” US Patent, 3940204 A (1975).

Yamaguchi, M.

Yamaguchi, T.

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

Yamamoto, K.

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Yamamoto, M.

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Yeom, H.-J.

Yeom, J.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

Yoshikawa, H.

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

Zhang, D.

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

Zhang, H.

Zhang, L.

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

Zhang, X.

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

Zhou, M.

ACM Trans. Graph. (2)

M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph. 29, 1–12 (2010).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 60 (2016).
[Crossref]

Appl. Opt. (9)

P. G. Boj, M. Pardo, and J. A. Quintana, “Display of ordinary transmission holograms with a white light source,” Appl. Opt. 25, 4146–4149 (1986).
[Crossref] [PubMed]

J. N. Latta, “Analysis of multiple hologram optical elements with low dispersion and low aberrations,” Appl. Opt. 11, 1686–1696 (1972).
[Crossref] [PubMed]

H. Madjii-Zolbanine and C. Froehly, “Holographic correction of both chromatic and spherical aberrations of single glass lenses,” Appl. Opt. 18, 2385–2393 (1979).
[Crossref]

M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31, 217–222 (1992).
[Crossref] [PubMed]

M.-L. Piao, K.-C. Kwon, H.-J. Kang, K.-Y. Lee, and N. Kim, “Full-color holographic diffuser using time-scheduled iterative exposure,” Appl. Opt. 54, 5252–5259 (2015).
[Crossref] [PubMed]

G. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements,” Appl. Opt. 55, A71–A85 (2016).
[Crossref] [PubMed]

T. Nakamura and M. Yamaguchi, “Rapid calibration of a projection-type holographic light-field display using hierarchically upconverted binary sinusoidal patterns,” Appl. Opt. 56, 9520–9525 (2017).
[Crossref] [PubMed]

M. Yamaguchi and R. Higashida, “3D touchable holographic light-field display,” Appl. Opt. 55, A178–A183 (2016).
[Crossref] [PubMed]

M. Zhou, O. Matoba, Y. Kitagawa, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Fabrication of an integrated holographic imaging element for a three-dimensional eye-gaze detection system,” Appl. Opt. 49, 3780–3785 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. J. De Bitetto, “White-light viewing of surface holograms by simple dispersion compensation,” Appl. Phys. Lett. 9, 417–418 (1966).
[Crossref]

Bell Syst. Tech. J. (1)

C. B. Burckhardt, “Display of holograms in white light,” Bell Syst. Tech. J. 45, 1841–1844 (1966).
[Crossref]

Biomed. Opt. Express (1)

Y. Lv, X. Zhang, D. Zhang, L. Zhang, Y. Luo, and J. Luo, “Reduction of blurring in broadband volume holographic imaging using a deconvolution method,” Biomed. Opt. Express 7, 7516–7524 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

J. Soc. Inf. Display (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Display 17, 185–193 (2009).
[Crossref]

Nat. Commun. (1)

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Nature (1)

P. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref] [PubMed]

Opt. Eng. (1)

T. Yamaguchi, O. Miyamoto, and H. Yoshikawa, “Volume hologram printer to record the wavefront of three-dimensional objects,” Opt. Eng. 51, 075802 (2012).
[Crossref]

Opt. Express (3)

Opt. Laser. Eng. (1)

M. Kumar and C. Shakher, “Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element,” Opt. Laser. Eng. 73, 33–39 (2015).
[Crossref]

Opt. Lett. (1)

Opt. Rev. (2)

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[Crossref]

T. Kasezawa, H. Horimai, H. Tabuchi, and T. Shimura, “Holographic window for solar power generation,” Opt. Rev. 23, 997–1003 (2016).
[Crossref]

Proc. SPIE (3)

T. Kubota, “Image sharpening of Lippmann hologram by compensation of wavelength dispersion,” Proc. SPIE 1051, 12–17 (1989).
[Crossref]

W. Nishi and K. Matsushima, “A wavefront printer using phase-only spatial light modulator for producing computer-generated volume holograms,” Proc. SPIE 9006, 90061F (2014).
[Crossref]

K. Wakunami, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Wavefront printing technique with overlapping approach toward high definition holographic image reconstruction,” Proc. SPIE 9867, 98670J (2016).

Other (9)

D. Ochi, A. Kamera, K. Takahashi, M. Makiguchi, and K. Takeuchi, “VR technologies for rich sports experience,” in SIGGRAPH (ACM, 2016), pp. 21.

T. Nakamura, S. Kimura, K. Takahashi, Y. Aburakawa, S. Takahashi, S. Igarashi, and M. Yamaguchi, “HOE-based screen for virtual-image projection and scene capture,” in International Display Workshops (ITE, 2017), 3D4-4.

N. F. Hartman, “Heads-up display with holographic dispersion correcting,” US Patent, 4613200 A (1986).

J. Jeong, J. Yeom, C. Jang, C.-K. Lee, K. Hong, and B. Lee, “Viewing characteristics improved integral imaging system using holographic printing technique,” in Imaging and Applied Optics (OSA, 2015), paper JT5A.1.
[Crossref]

M. Klug, M. Holzbach, and A. Ferdman, “Method and apparatus for recording 1-step full-color full-parallax holographic stereograms,” US Patent, US6330088B1 (1998).

D. Brotherton-Ratcliffe, F. M. Vergnes, A. Rodin, and M. Grichine, “Holographic Printer,” US Patent, US7800803B2 (1999).

A. Klein, “Dispersion compensation for reflection holography,” Master Thesis, Massachusetts Institute of Technology, (1996).

R. J. Withrington, “Optical display systems utilizing holographic lenses,” US Patent, 3940204 A (1975).

R. A. Farrar, “Helmet-mounted holographic aiming sight,” US Patent, 3633988 A (1970).

Supplementary Material (1)

NameDescription
» Visualization 1       Virtual image by the off-axis virtual-image display based on holographic mirror and blur compensation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the (a) virtual-image display by a slanted half mirror, (b)–(c) off-axis virtual-image displays by a upright holographic mirror with a display or a projector, and (d) off-axis camera by the holographic mirror. In off-axis virtual-image displays, the image can be seen behind the holographic mirror. In off-axis camera, the object is captured from the front by a camera at the off-axis position.
Fig. 2
Fig. 2 Schematic of the generation of spatial blur in a virtual image caused by the chromatic dispersion of a holographic mirror.
Fig. 3
Fig. 3 Schematic diagram of holographic-mirror-based off-axis virtual-image displays with (a) conventional and (b) proposed blur-compensation methods.
Fig. 4
Fig. 4 Schematic diagram of the proposed off-axis camera with blur compensation.
Fig. 5
Fig. 5 Configuration of the holographic printer used to produce a holographic mirror.
Fig. 6
Fig. 6 The fabricated holographic mirror with diffracted light forming a virtual image of a planer paper. The paper was illuminated by an external light source, and a star symbol was printed on a paper. Pictures focus on (a) the surface of the holographic mirror and (b) the virtual-image plane. A name card was placed on a virtual-image plane as a reference.
Fig. 7
Fig. 7 (a) Setup for and (b) result of a spectral-transmittance measurement of the holographic mirror for evaluating diffraction efficiency.
Fig. 8
Fig. 8 Setup for experimental verification of blur-compensated off-axis virtual-image display.
Fig. 9
Fig. 9 Images projected on the diffuser in an off-axis virtual-image display system without and with a blur-compensation-purpose DOE.
Fig. 10
Fig. 10 Experimentally observed virtual images in an off-axis virtual-image display without and with a blur-compensation-purpose DOE. The scale bar indicates 1 cm at the image plane.
Fig. 11
Fig. 11 Virtual images by the proposed method with changing observing viewpoints and focusing distances, which express the distance between the virtual image and the holographic mirror (see also Visualization 1).
Fig. 12
Fig. 12 Setup for experimental verification of blur-compensated off-axis camera.
Fig. 13
Fig. 13 Experimentally captured images by the off-axis camera without and with a blur-compensation-purpose DOE. The scale bar indicates 5 mm at the image plane.

Tables (2)

Tables Icon

Table 1 Experimental parameters for the blur-compensated off-axis virtual-image display.

Tables Icon

Table 2 Experimental parameters for the blur-compensated off-axis camera.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ θ HM = Δ λ HM λ o tan θ HM ,
b vimg z vimg Δ θ HM ,
b vimg = b vimg cos θ view .
b vimg ( conv . ) z [ HM 1 HM 2 ] Δ θ HM ,
Δ θ DOE = Δ θ HM .
tan θ HM = z DOE z HM tan θ DOE ,
Δ θ HM = Δ θ DOE .
tan θ DOE = z HM z DOE tan θ HM ,
η = max λ η λ , η λ = ( 1 T λ I λ ) × 100 .

Metrics