Abstract

A novel insulator string leakage current-monitoring sensor based on a fiber Bragg grating (FBG), cantilever beam, and spiral coil is demonstrated. The spiral coil is used to convert the leakage current into the force exerted on the cantilever structure, which is obtained by measuring the strain of the FBG. Experimental results show that the linear regression correlation coefficient is 0.99964. In addition, although the leakage current measurement is not sufficiently accurate, the 50-Hz component measurement is accurate. The sensor is suitable for use as an insulator string flashover warning and has promising prospects for future grid security protection applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wind direction sensing system based on fiber Bragg grating sensor

Xuefei Li, Zhiguo Zhang, and Luming Li
Appl. Opt. 56(36) 9862-9867 (2017)

Instrumentation design for bridge scour monitoring using fiber Bragg grating sensors

Wen Xiong, C. S. Cai, and Xuan Kong
Appl. Opt. 51(5) 547-557 (2012)

Absolute strain measurements made with fiber Bragg grating sensors

In C. Song, Sun K. Lee, Sung H. Jeong, and Byeong H. Lee
Appl. Opt. 43(6) 1337-1341 (2004)

References

  • View by:
  • |
  • |
  • |

  1. X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).
  2. D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).
  3. W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
    [Crossref]
  4. J. L. Fierro-Chavez, I. Ramirez-Vazquez, and G. Montoya-Tena, “Online leakage current monitoring of 400 kV insulator strings in polluted areas,” IEEE Proc. Gen. Trans. Dis. 143(6), 560–564 (1996).
  5. P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).
  6. J. Lv, X. Guo, H. Yuan, and Y. Liu, “Nonintrusive insulator leakage current monitoring system based on fiber optic transmission,” in Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, (2015), pp. 885–889.
  7. W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
    [Crossref]
  8. Z. Zhu, V. J. Hernandez, Y. J. Min, J. Cao, Z. Pan, and S. J. B. Yoo, “Rf photonics signal processing in subcarrier multiplexed optical-label switching communication systems,” J. Lightwave Technol. 21(12), 3155–3166 (2004).
  9. Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
    [Crossref]
  10. S. Cięszczyk and P. Kisała, “Inverse problem of determining periodic surface profile oscillation defects of steel materials with a fiber Bragg grating sensor,” Appl. Opt. 55(6), 1412–1420 (2016).
    [Crossref] [PubMed]
  11. J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sens. Actuators A Phys. 103(3), 330–340 (2003).
    [Crossref]
  12. Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
    [Crossref] [PubMed]
  13. J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
    [Crossref]
  14. G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.
  15. X. Li, Z. Zhang, and L. Li, “Wind direction sensing system based on fiber Bragg grating sensor,” Appl. Opt. 56(36), 9862–9867 (2017).
    [Crossref]
  16. Z. Zhang, C. Shen, and L. Li, “Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor,” Opt. Commun. 411, 108–113 (2018).
    [Crossref]
  17. L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
    [Crossref]
  18. X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
    [Crossref]
  19. B. Guan, Z. Liu, G. Kai, and X. Dong, “Fiber Bragg grating displacement sensor based on a cantilever beam,” Guangzi Xuebao 28(11), 983–985 (1999).
  20. H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).
  21. T. Suda, “Frequency characteristics of leakage current waveforms of an artificially polluted suspension insulator,” IEEE Trans. Dielect. Electric Insulation 8(4), 705–709 (2001).
  22. T. Suda, “Frequency characteristics of leakage current waveforms of a string of suspension insulators,” IEEE Trans. Power Deliver 20(1), 481–487 (2005).
    [Crossref]

2018 (2)

2017 (4)

X. Li, Z. Zhang, and L. Li, “Wind direction sensing system based on fiber Bragg grating sensor,” Appl. Opt. 56(36), 9862–9867 (2017).
[Crossref]

X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
[Crossref]

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

2016 (1)

2010 (1)

H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).

2008 (2)

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

2005 (3)

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).

T. Suda, “Frequency characteristics of leakage current waveforms of a string of suspension insulators,” IEEE Trans. Power Deliver 20(1), 481–487 (2005).
[Crossref]

2004 (2)

Z. Zhu, V. J. Hernandez, Y. J. Min, J. Cao, Z. Pan, and S. J. B. Yoo, “Rf photonics signal processing in subcarrier multiplexed optical-label switching communication systems,” J. Lightwave Technol. 21(12), 3155–3166 (2004).

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

2003 (1)

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sens. Actuators A Phys. 103(3), 330–340 (2003).
[Crossref]

2001 (1)

T. Suda, “Frequency characteristics of leakage current waveforms of an artificially polluted suspension insulator,” IEEE Trans. Dielect. Electric Insulation 8(4), 705–709 (2001).

1999 (1)

B. Guan, Z. Liu, G. Kai, and X. Dong, “Fiber Bragg grating displacement sensor based on a cantilever beam,” Guangzi Xuebao 28(11), 983–985 (1999).

1996 (1)

J. L. Fierro-Chavez, I. Ramirez-Vazquez, and G. Montoya-Tena, “Online leakage current monitoring of 400 kV insulator strings in polluted areas,” IEEE Proc. Gen. Trans. Dis. 143(6), 560–564 (1996).

Abral, H.

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

Ahmad, M.

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

Akella, V.

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

Arief, S.

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

Asundi, A.

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sens. Actuators A Phys. 103(3), 330–340 (2003).
[Crossref]

Aulia, A.

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

Butt, S.

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

Cao, B.

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

Cao, J.

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

Z. Zhu, V. J. Hernandez, Y. J. Min, J. Cao, Z. Pan, and S. J. B. Yoo, “Rf photonics signal processing in subcarrier multiplexed optical-label switching communication systems,” J. Lightwave Technol. 21(12), 3155–3166 (2004).

Caucheteur, C.

Chen, P.

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).

Chen, W.

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

Cieszczyk, S.

D’Angelo, L.

J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
[Crossref]

Darwison, D.

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

Debliquy, M.

Dong, H.

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

Dong, X.

B. Guan, Z. Liu, G. Kai, and X. Dong, “Fiber Bragg grating displacement sensor based on a cantilever beam,” Guangzi Xuebao 28(11), 983–985 (1999).

Du, L.

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

Fan, W.

H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).

Fasano, A.

G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.

Feng, D.

H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).

Feuerman, L.

X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
[Crossref]

Fierro-Chavez, J. L.

J. L. Fierro-Chavez, I. Ramirez-Vazquez, and G. Montoya-Tena, “Online leakage current monitoring of 400 kV insulator strings in polluted areas,” IEEE Proc. Gen. Trans. Dis. 143(6), 560–564 (1996).

Fok, M.

X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
[Crossref]

González-Vila, Á.

Guan, B.

B. Guan, Z. Liu, G. Kai, and X. Dong, “Fiber Bragg grating displacement sensor based on a cantilever beam,” Guangzi Xuebao 28(11), 983–985 (1999).

Guo, X.

J. Lv, X. Guo, H. Yuan, and Y. Liu, “Nonintrusive insulator leakage current monitoring system based on fiber optic transmission,” in Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, (2015), pp. 885–889.

Hazmi, A.

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

Hernandez, V. J.

Ioannou, A.

Jia, G.

X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
[Crossref]

Jiang, X.

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

Jin, L.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

Jonckheere, J.

J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
[Crossref]

Kai, G.

B. Guan, Z. Liu, G. Kai, and X. Dong, “Fiber Bragg grating displacement sensor based on a cantilever beam,” Guangzi Xuebao 28(11), 983–985 (1999).

Kinet, D.

J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
[Crossref]

Kisala, P.

Lahem, D.

Leng, J.

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sens. Actuators A Phys. 103(3), 330–340 (2003).
[Crossref]

Li, L.

Z. Zhang, C. Shen, and L. Li, “Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor,” Opt. Commun. 411, 108–113 (2018).
[Crossref]

X. Li, Z. Zhang, and L. Li, “Wind direction sensing system based on fiber Bragg grating sensor,” Appl. Opt. 56(36), 9862–9867 (2017).
[Crossref]

Li, M.

H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).

Li, X.

X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
[Crossref]

X. Li, Z. Zhang, and L. Li, “Wind direction sensing system based on fiber Bragg grating sensor,” Appl. Opt. 56(36), 9862–9867 (2017).
[Crossref]

Liao, R.

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

Liu, B.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

Liu, Y.

J. Lv, X. Guo, H. Yuan, and Y. Liu, “Nonintrusive insulator leakage current monitoring system based on fiber optic transmission,” in Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, (2015), pp. 885–889.

Liu, Z.

B. Guan, Z. Liu, G. Kai, and X. Dong, “Fiber Bragg grating displacement sensor based on a cantilever beam,” Guangzi Xuebao 28(11), 983–985 (1999).

Loyez, M.

Lv, J.

J. Lv, X. Guo, H. Yuan, and Y. Liu, “Nonintrusive insulator leakage current monitoring system based on fiber optic transmission,” in Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, (2015), pp. 885–889.

Markos, C.

G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.

Mei, H.

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

Meng, X.

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

Min, Y. J.

Montoya-Tena, G.

J. L. Fierro-Chavez, I. Ramirez-Vazquez, and G. Montoya-Tena, “Online leakage current monitoring of 400 kV insulator strings in polluted areas,” IEEE Proc. Gen. Trans. Dis. 143(6), 560–564 (1996).

Narbonneau, F.

J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
[Crossref]

Nielsen, K.

G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.

Nilsson, K.

X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
[Crossref]

Pan, Z.

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

Z. Zhu, V. J. Hernandez, Y. J. Min, J. Cao, Z. Pan, and S. J. B. Yoo, “Rf photonics signal processing in subcarrier multiplexed optical-label switching communication systems,” J. Lightwave Technol. 21(12), 3155–3166 (2004).

Paquet, B.

J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
[Crossref]

Pedersen, J.

G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.

Ramirez-Vazquez, I.

J. L. Fierro-Chavez, I. Ramirez-Vazquez, and G. Montoya-Tena, “Online leakage current monitoring of 400 kV insulator strings in polluted areas,” IEEE Proc. Gen. Trans. Dis. 143(6), 560–564 (1996).

Rasmussen, H.

G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.

Shen, C.

Z. Zhang, C. Shen, and L. Li, “Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor,” Opt. Commun. 411, 108–113 (2018).
[Crossref]

Song, J.

H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).

Suda, T.

T. Suda, “Frequency characteristics of leakage current waveforms of a string of suspension insulators,” IEEE Trans. Power Deliver 20(1), 481–487 (2005).
[Crossref]

T. Suda, “Frequency characteristics of leakage current waveforms of an artificially polluted suspension insulator,” IEEE Trans. Dielect. Electric Insulation 8(4), 705–709 (2001).

Sun, C.

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).

Tu, Q.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

Wang, H.

H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).

Wang, L.

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

Witt, J.

J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
[Crossref]

Woyessa, G.

G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.

Xiao, L.

P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).

Yan, M.

P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).

Yang, H.

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

Yao, C.

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).

Yoo, S. J. B.

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

Z. Zhu, V. J. Hernandez, Y. J. Min, J. Cao, Z. Pan, and S. J. B. Yoo, “Rf photonics signal processing in subcarrier multiplexed optical-label switching communication systems,” J. Lightwave Technol. 21(12), 3155–3166 (2004).

Yuan, H.

J. Lv, X. Guo, H. Yuan, and Y. Liu, “Nonintrusive insulator leakage current monitoring system based on fiber optic transmission,” in Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, (2015), pp. 885–889.

Zhang, H.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

Zhang, W.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

Zhang, Z.

Z. Zhang, C. Shen, and L. Li, “Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor,” Opt. Commun. 411, 108–113 (2018).
[Crossref]

X. Li, Z. Zhang, and L. Li, “Wind direction sensing system based on fiber Bragg grating sensor,” Appl. Opt. 56(36), 9862–9867 (2017).
[Crossref]

Zhao, J.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

Zhu, Z.

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

Z. Zhu, V. J. Hernandez, Y. J. Min, J. Cao, Z. Pan, and S. J. B. Yoo, “Rf photonics signal processing in subcarrier multiplexed optical-label switching communication systems,” J. Lightwave Technol. 21(12), 3155–3166 (2004).

Appl. Opt. (2)

Guangzi Xuebao (1)

B. Guan, Z. Liu, G. Kai, and X. Dong, “Fiber Bragg grating displacement sensor based on a cantilever beam,” Guangzi Xuebao 28(11), 983–985 (1999).

High Voltage Eng. (1)

X. Jiang, H. Dong, L. Wang, H. Mei, B. Cao, and X. Meng, “New method to describe contamination degree of insulators by effective equivalent salt deposit density,” High Voltage Eng. 43(12), 3869–3875 (2017).

IEEE Photonics Technol. Lett. (2)

Z. Pan, H. Yang, Z. Zhu, J. Cao, V. Akella, S. Butt, and S. J. B. Yoo, “Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router,” IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004).
[Crossref]

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, and Q. Tu, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2005).
[Crossref]

IEEE Proc. Gen. Trans. Dis. (1)

J. L. Fierro-Chavez, I. Ramirez-Vazquez, and G. Montoya-Tena, “Online leakage current monitoring of 400 kV insulator strings in polluted areas,” IEEE Proc. Gen. Trans. Dis. 143(6), 560–564 (1996).

IEEE Sens. J. (1)

X. Li, L. Feuerman, G. Jia, K. Nilsson, and M. Fok, “Temperature insensitive contact force sensing in bi-directional catheter using fiber bragg grating pair,” IEEE Sens. J. 17(16), 5118–5122 (2017).
[Crossref]

IEEE Trans. Dielect. Electric Insulation (1)

T. Suda, “Frequency characteristics of leakage current waveforms of an artificially polluted suspension insulator,” IEEE Trans. Dielect. Electric Insulation 8(4), 705–709 (2001).

IEEE Trans. Power Deliv. (2)

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

W. Chen, C. Yao, P. Chen, C. Sun, L. Du, and R. Liao, “A new broadband microcurrent transducer for insulator leakage current monitoring system,” IEEE Trans. Power Deliv. 23(1), 355–360 (2008).
[Crossref]

IEEE Trans. Power Deliver (1)

T. Suda, “Frequency characteristics of leakage current waveforms of a string of suspension insulators,” IEEE Trans. Power Deliver 20(1), 481–487 (2005).
[Crossref]

J. Eng. Appl. Sci. (1)

D. Darwison, S. Arief, H. Abral, A. Hazmi, M. Ahmad, and A. Aulia, “Thermal image, partial discharge and leakage current correlation of ceramic insulator under different contamination level,” J. Eng. Appl. Sci. 12(18), 5235–5240 (2017).

J. Lightwave Technol. (1)

Opt. Commun. (1)

Z. Zhang, C. Shen, and L. Li, “Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor,” Opt. Commun. 411, 108–113 (2018).
[Crossref]

Opt. Lett. (1)

Proc. CSEE (1)

P. Chen, C. Sun, M. Yan, C. Yao, and L. Xiao, “Research of broad bandwidth micro-current sensor character for insulator leakage current monitoring system,” Proc. CSEE 25(24), 1–2 (2005).

Sens. Actuators A Phys. (1)

J. Leng and A. Asundi, “Structural health monitoring of smart composite materials by using efpi and fbg sensors,” Sens. Actuators A Phys. 103(3), 330–340 (2003).
[Crossref]

Technol. Appl. (1)

H. Wang, J. Song, M. Li, D. Feng, and W. Fan, “Research on reducing hysteresis error of new FBG sensors,” Technol. Appl. 25(4), 50–53 (2010).

Other (3)

J. Jonckheere, F. Narbonneau, L. D’Angelo, J. Witt, B. Paquet, and D. Kinet, “FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications,” in IEEE International Conference on E-Health NETWORKING Applications and Services, (Academic, 2010), pp. 277–282.
[Crossref]

G. Woyessa, J. Pedersen, A. Fasano, K. Nielsen, C. Markos, and H. Rasmussen, “Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings,” in Optical Fiber Sensors Conference, (Academic, 2017), pp. 10323–103234.

J. Lv, X. Guo, H. Yuan, and Y. Liu, “Nonintrusive insulator leakage current monitoring system based on fiber optic transmission,” in Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, (2015), pp. 885–889.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of insulator string leakage current sensor.
Fig. 2
Fig. 2 Schematic of current acquisition part
Fig. 3
Fig. 3 Spiral coil and its magnetic field distribution on the axis
Fig. 4
Fig. 4 Structure of cantilever beam: (a) structural sketch, (b) physical map.
Fig. 5
Fig. 5 (a) Wavelength shift of two FBGs during the process. (b) Wavelength shift difference of two FBGs during the process
Fig. 6
Fig. 6 (a)Changes in wavelength shift of two FBGs with applied force. (b) Changes in wavelength shift difference of two FBGs with applied force
Fig. 7
Fig. 7 (a) Physical composition of insulator string leakage current sensor. (b) Test environment. (c) Spectrum of FBG-1 and FBG-2
Fig. 8
Fig. 8 (a) Wavelength difference for an arbitrary set of 40 consecutive sampling points under the 50-Hz input. (b) Wavelength difference for an arbitrary set of 40 consecutive sampling points under the 100-Hz input. (c) Current effective value of the multimeter and the sensor under the 50-Hz input. (d) Wavelength shift difference while periodically stepping on the floor. (e) Amplitude of the wavelength shift difference of FBGs for different frequency inputs
Fig. 9
Fig. 9 Practical application calibration of insulator string leakage current sensor

Tables (1)

Tables Icon

Table 1 Results of Calibration (50-Hz current)

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I leakage1 = U n R insulator
I leakage2 = U (n1) R insulator + R spiralcoil R insulator R spiralcoil + R insulator
I acqisition = I leakage2 R insulator R spiralcoil + R insulator
R insulator R spiralcoil .
B= μ 0 R 2 2 ( R 2 + x 2 ) 3 2 NI
Δλ λ = 6(1 p e )FL E h 2 b .
λ=2 n eff Λ.
Δλ λ =(α+β)ΔT+(1 p e )Δε
Δ ε 1 =-Δ ε 2 =Δε.
Δ T 1 =Δ T 2 =ΔT.
Δ λ i λ i =(α+β)Δ T i +(1 p e )Δ ε i .( i=1,2 )
λ 1 = λ 2 =λ.
Δ λ compensate =Δ λ 1 -Δ λ 2 .
Δ λ compensate =2λ(1 p e )Δε.
Δ λ compensate =2.0308 I acqisition +0.0765.

Metrics