Abstract

Impact of mode instability on dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers has been studied for the first time, which reveals another characterization of mode instability from the aspect of optical spectrum. It shows that, after the onset of mode instability, the measured light spectrums, especially the Raman light spectrums, are different from those without mode instability, which become burr-like. As mode instability evolves into different stages, the intensity of stimulated Raman scattering effects as laser power increasing also behaves differently. During the transition region, the stimulated Raman scattering effect becomes stronger as the lasing power increases until the mode instability evolves into chaotic regions, where the stimulated Raman scattering effect weakens. The effect of stimulated Raman scattering on mode instability has also been studied. Due to that the stimulated Raman scattering effect is weak and that the fraction of Raman light is only a few percent, the stimulated-Raman-scattering-induced mode instability has not been observed in the experiment, and the observed mode instability is induced by ytterbium ion gain of signal laser. It also revealed that the stimulated Raman scattering has negligible influence on the mode instability induced by ytterbium ion gain.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of stimulated Raman scattering in a high-power fiber amplifier by inserting long transmission fibers in a seed laser

Tenglong Li, Weiwei Ke, Yi Ma, Yinhong Sun, and Qingsong Gao
J. Opt. Soc. Am. B 36(6) 1457-1465 (2019)

Mode instability dynamics in high-power low-numerical-aperture step-index fiber amplifier

Liangjin Huang, Tianfu Yao, Jinyong Leng, Shaofeng Guo, Rumao Tao, Pu Zhou, and Xiang’ai Cheng
Appl. Opt. 56(19) 5412-5417 (2017)

Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani
Opt. Lett. 42(24) 5274-5277 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  3. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  4. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
    [Crossref] [PubMed]
  5. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  6. C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
  7. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3kW monolithic linearly-polarized single-mode MOPA and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
    [Crossref]
  8. M. N. Zervas, “Transverse mode instability analysis in fibre amplifiers,” Proc. SPIE 10083, 100830M (2017).
    [Crossref]
  9. Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
    [Crossref]
  10. Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
    [Crossref]
  11. M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).
  12. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]
  13. A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express 20(22), 24545–24558 (2012).
    [Crossref] [PubMed]
  14. F. Kong, J. Xue, R. H. Stolen, and L. Dong, “Direct experimental observation of stimulated thermal Rayleigh scattering with polarization modes in a fiber amplifier,” Optica 3(9), 975–978 (2016).
    [Crossref]
  15. F. Beier, M. Plötner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities,” Opt. Lett. 42(21), 4311–4314 (2017).
    [Crossref] [PubMed]
  16. H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
    [Crossref] [PubMed]
  17. C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
    [Crossref]
  18. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
    [Crossref]
  19. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
    [Crossref]
  20. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
    [Crossref]
  21. H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” in Advanced Solid State Lasers Conference (2014).
    [Crossref]
  22. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).
  23. A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
    [Crossref] [PubMed]
  24. A. V. Smith and J. J. Smith, “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, 860108 (2013).
    [Crossref] [PubMed]
  25. R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
    [Crossref]
  26. M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
    [Crossref]
  27. Z. S. Eznaveh, G. Lopez-Galmiche, E. Antonio-Lopez, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
    [Crossref]
  28. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
    [Crossref]
  29. C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultra-high brightness pumps,” Proc. SPIE 9728, 972806 (2015).
  30. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  31. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
    [Crossref] [PubMed]
  32. M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).
  33. V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of Stimulated Raman Scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).
  34. S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical treatment of modal instability in high power cladding pumped Raman amplifiers,” Proc. SPIE 9344, 93442X (2015).
    [Crossref]
  35. K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274–5277 (2017).
    [Crossref] [PubMed]
  36. Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
    [Crossref]
  37. L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. Cheng, “Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
    [Crossref]
  38. B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
    [Crossref] [PubMed]
  39. K. Hejaz, M. Shayganmanesh, A. Roohforouz, R. Rezaei-Nasirabad, A. Abedinajafi, S. Azizi, and V. Vatani, “Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification,” Appl. Opt. 57(21), 5992–5997 (2018).
    [Crossref] [PubMed]
  40. K. Hejaz, M. Shayganmanesh, S. Azizi, A. Abedinajafi, A. Roohforouz, R. Rezaei-Nasirabad, and V. Vatani, “Transverse mode instability of fiber oscillators in comparison with fiber amplifiers,” Laser Phys. Lett. 15(5), 055102 (2018).
    [Crossref]
  41. T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
    [Crossref]
  42. H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
    [Crossref]
  43. H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 65102 (2013).
    [Crossref]
  44. H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
    [Crossref] [PubMed]
  45. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of mode instabilities in high power fiber amplifiers by detecting scattering light,” presented at International Photonics and Opt-Electronics Meetings (2014), paper FTh2F.2.
    [Crossref]
  46. M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Wessels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett. 37(20), 4242–4244 (2012).
    [Crossref] [PubMed]
  47. N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
    [Crossref] [PubMed]
  48. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
    [Crossref]
  49. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers,” J. Opt. 18(6), 065501 (2016).
    [Crossref]
  50. A. V. Smith and J. J. Smith, “Frequency dependence of mode coupling gain in Yb doped fiber amplifiers due to stimulated thermal Rayleigh scattering,” arXiv:1301.4277 [physics.optics] (2013), http://arxiv.org/abs/1301.4277 .
  51. L. Huang, L. Kong, J. Leng, P. Zhou, S. Guo, and X. Cheng, “Impact of high-order-mode loss on high-power fiber amplifiers,” J. Opt. Soc. Am. B 33(6), 1030–1037 (2016).
    [Crossref]
  52. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  53. H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
    [Crossref] [PubMed]
  54. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
    [Crossref] [PubMed]
  55. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [Crossref] [PubMed]
  56. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).
  57. R. Tao, X. Wang, P. Zhou, and Z. Liu, “Seed power dependence of mode instabilities in high-power fiber amplifiers,” J. Opt. 19(6), 065202 (2017).
    [Crossref]
  58. R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
    [Crossref]
  59. K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
    [Crossref] [PubMed]
  60. Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
    [Crossref]
  61. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier,” Opt. Lett. 41(22), 5202–5205 (2016).
    [Crossref] [PubMed]
  62. S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49(8), 1054–1059 (2011).
    [Crossref]
  63. O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).
  64. www.ophiropt.com/photonics
  65. D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-mode instability in high-gain few-mode Yb3+-doped fiber amplifiers with a 10-µm core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 5100608 (2018).
    [Crossref]
  66. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
    [Crossref] [PubMed]
  67. R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
    [Crossref]

2018 (10)

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of Stimulated Raman Scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

K. Hejaz, M. Shayganmanesh, S. Azizi, A. Abedinajafi, A. Roohforouz, R. Rezaei-Nasirabad, and V. Vatani, “Transverse mode instability of fiber oscillators in comparison with fiber amplifiers,” Laser Phys. Lett. 15(5), 055102 (2018).
[Crossref]

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-mode instability in high-gain few-mode Yb3+-doped fiber amplifiers with a 10-µm core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 5100608 (2018).
[Crossref]

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

K. Hejaz, M. Shayganmanesh, A. Roohforouz, R. Rezaei-Nasirabad, A. Abedinajafi, S. Azizi, and V. Vatani, “Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification,” Appl. Opt. 57(21), 5992–5997 (2018).
[Crossref] [PubMed]

2017 (9)

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

F. Beier, M. Plötner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities,” Opt. Lett. 42(21), 4311–4314 (2017).
[Crossref] [PubMed]

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274–5277 (2017).
[Crossref] [PubMed]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

R. Tao, X. Wang, P. Zhou, and Z. Liu, “Seed power dependence of mode instabilities in high-power fiber amplifiers,” J. Opt. 19(6), 065202 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fibre amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

2016 (6)

2015 (12)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3kW monolithic linearly-polarized single-mode MOPA and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
[Crossref]

N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
[Crossref] [PubMed]

H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Z. S. Eznaveh, G. Lopez-Galmiche, E. Antonio-Lopez, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultra-high brightness pumps,” Proc. SPIE 9728, 972806 (2015).

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical treatment of modal instability in high power cladding pumped Raman amplifiers,” Proc. SPIE 9344, 93442X (2015).
[Crossref]

2014 (7)

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. Cheng, “Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

2013 (7)

2012 (7)

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[Crossref]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
[Crossref]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Wessels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett. 37(20), 4242–4244 (2012).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express 20(22), 24545–24558 (2012).
[Crossref] [PubMed]

2011 (4)

2008 (1)

Abedinajafi, A.

Afzal, R.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Alekseev, D.

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-mode instability in high-gain few-mode Yb3+-doped fiber amplifiers with a 10-µm core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 5100608 (2018).
[Crossref]

O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).

Alkeskjold, T. T.

Amezcua Correa, R.

Z. S. Eznaveh, G. Lopez-Galmiche, E. Antonio-Lopez, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Antipov, O.

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-mode instability in high-gain few-mode Yb3+-doped fiber amplifiers with a 10-µm core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 5100608 (2018).
[Crossref]

O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).

Antonio-Lopez, E.

Z. S. Eznaveh, G. Lopez-Galmiche, E. Antonio-Lopez, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Azizi, S.

Babazadeh, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Barty, C. P.

Beach, R. J.

Beier, F.

Benoît, A.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Bock, V.

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of Stimulated Raman Scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

Brar, K.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Broeng, J.

Chen, J.

Cheng, X.

L. Huang, L. Kong, J. Leng, P. Zhou, S. Guo, and X. Cheng, “Impact of high-order-mode loss on high-power fiber amplifiers,” J. Opt. Soc. Am. B 33(6), 1030–1037 (2016).
[Crossref]

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. Cheng, “Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Courtney, S.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Dajani, I.

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical treatment of modal instability in high power cladding pumped Raman amplifiers,” Proc. SPIE 9344, 93442X (2015).
[Crossref]

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[Crossref]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

Darwich, D.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Dauliat, R.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Dawson, J. W.

Dilley, C.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Dong, L.

du Jeu, R.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Eberhardt, R.

Eidam, T.

Eznaveh, Z. S.

Z. S. Eznaveh, G. Lopez-Galmiche, E. Antonio-Lopez, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Fan, T. Y.

C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier,” Opt. Lett. 41(22), 5202–5205 (2016).
[Crossref] [PubMed]

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultra-high brightness pumps,” Proc. SPIE 9728, 972806 (2015).

Gaida, C.

Galvanauskas, A.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).

Goebel, T. A.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

Golshan, A. H.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Gong, M.

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49(8), 1054–1059 (2011).
[Crossref]

Grosek, J.

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical treatment of modal instability in high power cladding pumped Raman amplifiers,” Proc. SPIE 9344, 93442X (2015).
[Crossref]

Guo, S.

L. Huang, L. Kong, J. Leng, P. Zhou, S. Guo, and X. Cheng, “Impact of high-order-mode loss on high-power fiber amplifiers,” J. Opt. Soc. Am. B 33(6), 1030–1037 (2016).
[Crossref]

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. Cheng, “Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
[Crossref]

Haarlammert, N.

Hansen, K. R.

Heck, M.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

Heebner, J. E.

Heidariazar, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hejaz, K.

K. Hejaz, M. Shayganmanesh, S. Azizi, A. Abedinajafi, A. Roohforouz, R. Rezaei-Nasirabad, and V. Vatani, “Transverse mode instability of fiber oscillators in comparison with fiber amplifiers,” Laser Phys. Lett. 15(5), 055102 (2018).
[Crossref]

K. Hejaz, M. Shayganmanesh, A. Roohforouz, R. Rezaei-Nasirabad, A. Abedinajafi, S. Azizi, and V. Vatani, “Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification,” Appl. Opt. 57(21), 5992–5997 (2018).
[Crossref] [PubMed]

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274–5277 (2017).
[Crossref] [PubMed]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Henrie, J.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Honea, E.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Hu, I.-N.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).

Huang, L.

Huang, Z.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

Jafari, N. T.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Jamier, R.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Jansen, F.

Jauregui, C.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” in Advanced Solid State Lasers Conference (2014).
[Crossref]

Jiang, Z.

Jing, F.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

Jørgensen, M. M.

Jung, M.

Karow, M.

Ke, W.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Kong, F.

Kong, L.

Koponen, J. J.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).

Kracht, D.

Krämer, R. G.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

Kuznetsov, M.

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-mode instability in high-gain few-mode Yb3+-doped fiber amplifiers with a 10-µm core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 5100608 (2018).
[Crossref]

O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).

Lægsgaard, J.

Lafouti, M.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Lanari, A.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[Crossref]

Laurila, M.

Leconte, B.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Lei, M.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Leng, J.

Li, C.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Li, T.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Li, Z.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

Liang, X.

Liem, A.

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of Stimulated Raman Scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

F. Beier, M. Plötner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities,” Opt. Lett. 42(21), 4311–4314 (2017).
[Crossref] [PubMed]

N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
[Crossref] [PubMed]

Limpert, J.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” in Advanced Solid State Lasers Conference (2014).
[Crossref]

Lin, H.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

Liu, C.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Liu, Q.

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Liu, W.

Liu, Y.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

Liu, Z.

R. Tao, X. Wang, P. Zhou, and Z. Liu, “Seed power dependence of mode instabilities in high-power fiber amplifiers,” J. Opt. 19(6), 065202 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers,” J. Opt. 18(6), 065501 (2016).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3kW monolithic linearly-polarized single-mode MOPA and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).

Liu, Z. J.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 65102 (2013).
[Crossref]

Lopez-Galmiche, G.

Z. S. Eznaveh, G. Lopez-Galmiche, E. Antonio-Lopez, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Lu, Q.

Ludewigt, K.

Luo, Q.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Lv, H.

Ma, P.

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers,” J. Opt. 18(6), 065501 (2016).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3kW monolithic linearly-polarized single-mode MOPA and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

Ma, Y.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Madden, T.

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical treatment of modal instability in high power cladding pumped Raman amplifiers,” Proc. SPIE 9344, 93442X (2015).
[Crossref]

Malleville, M.-A.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Matzdorf, C.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

Messerly, M. J.

Modsching, N.

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” in Advanced Solid State Lasers Conference (2014).
[Crossref]

Naderi, S.

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical treatment of modal instability in high power cladding pumped Raman amplifiers,” Proc. SPIE 9344, 93442X (2015).
[Crossref]

Nasirabad, R. R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Neumann, J.

Nold, J.

Nolte, St.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

Norouzey, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Otto, H. J.

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” in Advanced Solid State Lasers Conference (2014).
[Crossref]

Otto, H.-J.

Pax, P. H.

Peng, W.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Petit, L.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).

Plötner, M.

Poozesh, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Qi, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Rezaei-Nasirabad, R.

Richter, D.

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

Robin, C.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[Crossref]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

Roohforouz, A.

K. Hejaz, M. Shayganmanesh, S. Azizi, A. Abedinajafi, A. Roohforouz, R. Rezaei-Nasirabad, and V. Vatani, “Transverse mode instability of fiber oscillators in comparison with fiber amplifiers,” Laser Phys. Lett. 15(5), 055102 (2018).
[Crossref]

K. Hejaz, M. Shayganmanesh, A. Roohforouz, R. Rezaei-Nasirabad, A. Abedinajafi, S. Azizi, and V. Vatani, “Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification,” Appl. Opt. 57(21), 5992–5997 (2018).
[Crossref] [PubMed]

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274–5277 (2017).
[Crossref] [PubMed]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Roy, P.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Sattler, B.

Savage-Leuchs, M.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Schmidt, O.

Schreiber, T.

Schuster, K.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Schwuchow, A.

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

Shatrovoy, O.

C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier,” Opt. Lett. 41(22), 5202–5205 (2016).
[Crossref] [PubMed]

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultra-high brightness pumps,” Proc. SPIE 9728, 972806 (2015).

Shayganmanesh, M.

Shi, C.

Shverdin, M. Y.

Si, L.

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

Siders, C. W.

Smith, A. V.

Smith, J. J.

Sridharan, A. K.

Stappaerts, E. A.

Stolen, R. H.

Strecker, M.

Stutzki, F.

F. Beier, M. Plötner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities,” Opt. Lett. 42(21), 4311–4314 (2017).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Su, R.

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

Sun, Y.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Tang, C.

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Tao, R.

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

R. Tao, X. Wang, P. Zhou, and Z. Liu, “Seed power dependence of mode instabilities in high-power fiber amplifiers,” J. Opt. 19(6), 065202 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers,” J. Opt. 18(6), 065501 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3kW monolithic linearly-polarized single-mode MOPA and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

Taunay, T. F.

Tünnermann, A.

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of Stimulated Raman Scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

F. Beier, M. Plötner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities,” Opt. Lett. 42(21), 4311–4314 (2017).
[Crossref] [PubMed]

N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” in Advanced Solid State Lasers Conference (2014).
[Crossref]

Tünnermann, H.

Tyrtyshnyy, V.

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-mode instability in high-gain few-mode Yb3+-doped fiber amplifiers with a 10-µm core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 5100608 (2018).
[Crossref]

O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).

Vatani, V.

Vershinin, O.

O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).

Walbaum, T.

Wang, J.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

Wang, W.

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. Cheng, “Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

Wang, X.

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

R. Tao, X. Wang, P. Zhou, and Z. Liu, “Seed power dependence of mode instabilities in high-power fiber amplifiers,” J. Opt. 19(6), 065202 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers,” J. Opt. 18(6), 065501 (2016).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3kW monolithic linearly-polarized single-mode MOPA and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
[Crossref]

Wang, X. L.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 65102 (2013).
[Crossref]

Wang, Y.

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Ward, B.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[Crossref]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

Wessels, P.

Wirth, C.

Xiang, X.

Xiao, H.

H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 65102 (2013).
[Crossref]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
[Crossref]

Xu, J.

Xu, S.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

Xu, X.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. Cheng, “Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
[Crossref]

Xu, X. J.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 65102 (2013).
[Crossref]

Xue, J.

Yan, P.

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49(8), 1054–1059 (2011).
[Crossref]

Yang, B.

Yang, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Yang, Z.

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
[Crossref]

Ye, C.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).

Yin, S.

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49(8), 1054–1059 (2011).
[Crossref]

Yu, C. X.

C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier,” Opt. Lett. 41(22), 5202–5205 (2016).
[Crossref] [PubMed]

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultra-high brightness pumps,” Proc. SPIE 9728, 972806 (2015).

Zeringue, C.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[Crossref]

Zervas, M. N.

M. N. Zervas, “Transverse mode instability analysis in fibre amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

Zha, C.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Zhang, H.

Zheng, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Zhou, J.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Zhou, P.

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

R. Tao, X. Wang, P. Zhou, and Z. Liu, “Seed power dependence of mode instabilities in high-power fiber amplifiers,” J. Opt. 19(6), 065202 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers,” J. Opt. 18(6), 065501 (2016).
[Crossref]

L. Huang, L. Kong, J. Leng, P. Zhou, S. Guo, and X. Cheng, “Impact of high-order-mode loss on high-power fiber amplifiers,” J. Opt. Soc. Am. B 33(6), 1030–1037 (2016).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
[Crossref] [PubMed]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3kW monolithic linearly-polarized single-mode MOPA and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 65102 (2013).
[Crossref]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
[Crossref]

Ann. Phys. (1)

Y. Wang, Q. Liu, Y. Ma, Y. Sun, W. Peng, W. Ke, X. Wang, and C. Tang, “Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers,” Ann. Phys. 529(8), 1600398 (2017).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (3)

R. Tao, X. Wang, and P. Zhou, “Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0903319 (2018).
[Crossref]

D. Alekseev, V. Tyrtyshnyy, M. Kuznetsov, and O. Antipov, “Transverse-mode instability in high-gain few-mode Yb3+-doped fiber amplifiers with a 10-µm core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24(3), 5100608 (2018).
[Crossref]

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).

IEEE Photonics J. (1)

Z. Li, C. Li, Y. Liu, Q. Luo, H. Lin, Z. Huang, S. Xu, Z. Yang, J. Wang, and F. Jing, “Impact of stimulated Raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10(3), 1502709 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Huang, W. Wang, J. Leng, S. Guo, X. Xu, and X. Cheng, “Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier,” IEEE Photonics Technol. Lett. 26(1), 33–36 (2014).
[Crossref]

H. Xiao, P. Zhou, X. Wang, S. Guo, and X. Xu, “Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier,” IEEE Photonics Technol. Lett. 24(13), 1088–1090 (2012).
[Crossref]

IEEE Quantum Electron. (1)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE Quantum Electron. 51, 1600106 (2015).

J. Opt. (3)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers,” J. Opt. 18(6), 065501 (2016).
[Crossref]

R. Tao, X. Wang, P. Zhou, and Z. Liu, “Seed power dependence of mode instabilities in high-power fiber amplifiers,” J. Opt. 19(6), 065202 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (3)

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fber amplifer seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Y. Liu, R. Tao, R. Su, X. Wang, P. Ma, H. Zhang, P. Zhou, and L. Si, “Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier,” Laser Phys. 28(4), 045101 (2018).
[Crossref]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Laser Phys. Lett. (6)

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

K. Hejaz, M. Shayganmanesh, S. Azizi, A. Abedinajafi, A. Roohforouz, R. Rezaei-Nasirabad, and V. Vatani, “Transverse mode instability of fiber oscillators in comparison with fiber amplifiers,” Laser Phys. Lett. 15(5), 055102 (2018).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, “2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14(8), 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 65102 (2013).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (15)

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express 20(22), 24545–24558 (2012).
[Crossref] [PubMed]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49(8), 1054–1059 (2011).
[Crossref]

Opt. Lett. (7)

C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier,” Opt. Lett. 41(22), 5202–5205 (2016).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Wessels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett. 37(20), 4242–4244 (2012).
[Crossref] [PubMed]

N. Haarlammert, B. Sattler, A. Liem, M. Strecker, J. Nold, T. Schreiber, R. Eberhardt, A. Tünnermann, K. Ludewigt, and M. Jung, “Optimizing mode instability in low-NA fibers by passive strategies,” Opt. Lett. 40(10), 2317–2320 (2015).
[Crossref] [PubMed]

F. Beier, M. Plötner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities,” Opt. Lett. 42(21), 4311–4314 (2017).
[Crossref] [PubMed]

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274–5277 (2017).
[Crossref] [PubMed]

Optica (1)

Photon. Res. (2)

Proc. SPIE (13)

M.-A. Malleville, A. Benoît, R. Dauliat, B. Leconte, D. Darwich, R. du Jeu, R. Jamier, A. Schwuchow, K. Schuster, and P. Roy, “Experimental investigation of the transverse modal instabilities onset in high power Fully-Aperiodic-Large-Pitch Fiber lasers,” Proc. SPIE 10512, 1051206 (2018).

M. N. Zervas, “Transverse mode instability analysis in fibre amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[Crossref]

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultra-high brightness pumps,” Proc. SPIE 9728, 972806 (2015).

M. Heck, V. Bock, R. G. Krämer, D. Richter, T. A. Goebel, C. Matzdorf, A. Liem, T. Schreiber, A. Tünnermann, and St. Nolte, “Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings,” Proc. SPIE 10512, 105121I (2018).

V. Bock, A. Liem, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Explanation of Stimulated Raman Scattering in high power fiber systems,” Proc. SPIE 10512, 105121F (2018).

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical treatment of modal instability in high power cladding pumped Raman amplifiers,” Proc. SPIE 9344, 93442X (2015).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, 860108 (2013).
[Crossref] [PubMed]

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” Proc. SPIE 9543, 95431L (2015).
[Crossref]

Z. S. Eznaveh, G. Lopez-Galmiche, E. Antonio-Lopez, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.4 kW all-fiber narrow linewidth polarization-maintained fiber amplifier,” Proc. SPIE 9255, 92550B (2015).

O. Antipov, M. Kuznetsov, V. Tyrtyshnyy, D. Alekseev, and O. Vershinin, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection,” Proc. SPIE 9728, 97280A (2015).

Other (4)

www.ophiropt.com/photonics

A. V. Smith and J. J. Smith, “Frequency dependence of mode coupling gain in Yb doped fiber amplifiers due to stimulated thermal Rayleigh scattering,” arXiv:1301.4277 [physics.optics] (2013), http://arxiv.org/abs/1301.4277 .

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of mode instabilities in high power fiber amplifiers by detecting scattering light,” presented at International Photonics and Opt-Electronics Meetings (2014), paper FTh2F.2.
[Crossref]

H. J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” in Advanced Solid State Lasers Conference (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of the high power fiber laser systems.
Fig. 2
Fig. 2 (a) Time series at different lasing power, (b) M2 at different lasing power, and (c) the value of σ as a function of lasing power. The inset figure in (a) is the corresponding Fourier frequency spectrums while that in (b) is the corresponding beam spots.
Fig. 3
Fig. 3 The power character of the fiber laser systems. (a) Lasing power as a function of pump power, (b) backward power as a function of lasing power, and (c) backward spectrum of the backward power at 3930W.
Fig. 4
Fig. 4 The spectral character of the high power fiber laser systems. (a) Spectrums at different lasing power, (b) details of the signal light spectrums in (a), (c) details of the Raman light spectrums in (a), and (d) spectrums at different lasing power.
Fig. 5
Fig. 5 3dB linewidth as a function of lasing power.
Fig. 6
Fig. 6 (a) Spectrums at different seed power, and (b) the backward power as a function of lasing power for different seed power.
Fig. 7
Fig. 7 Experimental results of the optimized fiber systems. (a) the output power as a function of pump power, (b) the backward power as a function of lasing power, (c) the spectrums at 3930W for different length of fiber, (d) the backward power as a function of lasing power for seed power of 310W.
Fig. 8
Fig. 8 (a) The output power as a function of pump power, and (b) the backward power as a function of lasing power.
Fig. 9
Fig. 9 The linear spectrums of the high power fiber laser systems. The spectrums in (a) are at the same power of Fig. 4(a), and the spectrum in (b) is at ~4050W in Fig. 6(b), which corresponds to the strongest SRS effect except for the case that the systems has been shut down for safety consideration. The inset figure in (b) is the corresponding logarithm spectrum.

Metrics