J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Rep. 8(1), 7669 (2018).
[Crossref]
[PubMed]
J. Sun, Q. Chen, J. Zhang, Y. Fan, and C. Zuo., “Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography,” Opt. Lett. 43(14), 3365–3368 (2018).
[Crossref]
[PubMed]
J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Reports 7(1), 1187 (2017).
[Crossref]
Y. Fan, J. Sun, Q. Chen, M. Wang, and C. Zuo, “Adaptive denoising method for Fourier ptychographic microscopy,” Opt. Commun. 404, 23–31 (2017).
[Crossref]
J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy, ” Sci. Reports, 7(1), 11777 (2017).
[Crossref]
W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning, ” Light 5(4), e16060 (2016).
[Crossref]
C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy,” Opt. Express 24(18) 20724–20744 (2016).
[Crossref]
[PubMed]
J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space, ” Opt. Express 24(14), 15765–15781 (2016).
[Crossref]
[PubMed]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]
[PubMed]
L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
[Crossref]
[PubMed]
S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref]
[PubMed]
S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref]
[PubMed]
G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, highresolution fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]
C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref]
[PubMed]
C. Zuo, Q. Chen, W. Qu, and A. Asundi., “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10) 1724–1726 (2013).
[Crossref]
[PubMed]
T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref]
[PubMed]
G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
[Crossref]
[PubMed]
S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref]
[PubMed]
G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol. 90, 87–115 (2008).
[Crossref]
E. Glory and R. F. Murphy, “Automated subcellular location determination and high-throughput microscopy,” Dev. Cell 12(1), 7–16 (2007).
[Crossref]
[PubMed]
V. Starkuviene and R. Pepperkok, “The potential of highcontent high-throughput microscopy in drug discovery,” Br. Journal pharmacology 152(1), 62–71 (2007).
[Crossref]
F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Physics 2, 258 (2006).
[Crossref]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref]
[PubMed]
C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref]
[PubMed]
J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. Microscopy 135, 275–286 (1984).
[Crossref]
D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
[Crossref]
H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
[Crossref]
[PubMed]
F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
[Crossref]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
Mario Bertero and Patrizia Boccacci., Introduction to Inverse Problems in Imaging (CRC Press, 1998).
[Crossref]
Mario Bertero and Patrizia Boccacci., Introduction to Inverse Problems in Imaging (CRC Press, 1998).
[Crossref]
F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Physics 2, 258 (2006).
[Crossref]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
J. Sun, Q. Chen, J. Zhang, Y. Fan, and C. Zuo., “Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography,” Opt. Lett. 43(14), 3365–3368 (2018).
[Crossref]
[PubMed]
J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Rep. 8(1), 7669 (2018).
[Crossref]
[PubMed]
J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Reports 7(1), 1187 (2017).
[Crossref]
J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy, ” Sci. Reports, 7(1), 11777 (2017).
[Crossref]
Y. Fan, J. Sun, Q. Chen, M. Wang, and C. Zuo, “Adaptive denoising method for Fourier ptychographic microscopy,” Opt. Commun. 404, 23–31 (2017).
[Crossref]
J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space, ” Opt. Express 24(14), 15765–15781 (2016).
[Crossref]
[PubMed]
C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy,” Opt. Express 24(18) 20724–20744 (2016).
[Crossref]
[PubMed]
C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref]
[PubMed]
C. Zuo, Q. Chen, W. Qu, and A. Asundi., “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10) 1724–1726 (2013).
[Crossref]
[PubMed]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref]
[PubMed]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Physics 2, 258 (2006).
[Crossref]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref]
[PubMed]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref]
[PubMed]
Etienne Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref]
[PubMed]
S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref]
[PubMed]
J. Sun, Q. Chen, J. Zhang, Y. Fan, and C. Zuo., “Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography,” Opt. Lett. 43(14), 3365–3368 (2018).
[Crossref]
[PubMed]
J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Rep. 8(1), 7669 (2018).
[Crossref]
[PubMed]
Y. Fan, J. Sun, Q. Chen, M. Wang, and C. Zuo, “Adaptive denoising method for Fourier ptychographic microscopy,” Opt. Commun. 404, 23–31 (2017).
[Crossref]
J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]
W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning, ” Light 5(4), e16060 (2016).
[Crossref]
T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref]
[PubMed]
E. Glory and R. F. Murphy, “Automated subcellular location determination and high-throughput microscopy,” Dev. Cell 12(1), 7–16 (2007).
[Crossref]
[PubMed]
W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning, ” Light 5(4), e16060 (2016).
[Crossref]
D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
[Crossref]
D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. Microscopy 135, 275–286 (1984).
[Crossref]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, highresolution fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]
B. Kachar, “Asymmetric illumination contrast: a method of image formation for video light microscopy,” Science 227, 766–768 (1985).
[Crossref]
[PubMed]
J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy, ” Sci. Reports, 7(1), 11777 (2017).
[Crossref]
W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning, ” Light 5(4), e16060 (2016).
[Crossref]
S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref]
[PubMed]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref]
[PubMed]
T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref]
[PubMed]
E. Glory and R. F. Murphy, “Automated subcellular location determination and high-throughput microscopy,” Dev. Cell 12(1), 7–16 (2007).
[Crossref]
[PubMed]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning, ” Light 5(4), e16060 (2016).
[Crossref]
W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution, ” Opt. Express, 18(11), 11181–11191 (2010).
[Crossref]
[PubMed]
V. Starkuviene and R. Pepperkok, “The potential of highcontent high-throughput microscopy in drug discovery,” Br. Journal pharmacology 152(1), 62–71 (2007).
[Crossref]
F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Physics 2, 258 (2006).
[Crossref]
G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol. 90, 87–115 (2008).
[Crossref]
C. Zuo, Q. Chen, W. Qu, and A. Asundi., “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10) 1724–1726 (2013).
[Crossref]
[PubMed]
C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref]
[PubMed]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref]
J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]
H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
[Crossref]
[PubMed]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. Microscopy 135, 275–286 (1984).
[Crossref]
D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
[Crossref]
S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref]
[PubMed]
S. B. Mehta and C. J. Sheppard, “Quantitative phasegradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34(13), 1924–1926 (2009).
[Crossref]
[PubMed]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref]
[PubMed]
S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref]
[PubMed]
V. Starkuviene and R. Pepperkok, “The potential of highcontent high-throughput microscopy in drug discovery,” Br. Journal pharmacology 152(1), 62–71 (2007).
[Crossref]
J. Sun, Q. Chen, J. Zhang, Y. Fan, and C. Zuo., “Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography,” Opt. Lett. 43(14), 3365–3368 (2018).
[Crossref]
[PubMed]
J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Rep. 8(1), 7669 (2018).
[Crossref]
[PubMed]
J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy, ” Sci. Reports, 7(1), 11777 (2017).
[Crossref]
J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Reports 7(1), 1187 (2017).
[Crossref]
Y. Fan, J. Sun, Q. Chen, M. Wang, and C. Zuo, “Adaptive denoising method for Fourier ptychographic microscopy,” Opt. Commun. 404, 23–31 (2017).
[Crossref]
C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy,” Opt. Express 24(18) 20724–20744 (2016).
[Crossref]
[PubMed]
J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space, ” Opt. Express 24(14), 15765–15781 (2016).
[Crossref]
[PubMed]
L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
[Crossref]
[PubMed]
L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]
[PubMed]
L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
[Crossref]
[PubMed]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
[Crossref]
[PubMed]
L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]
[PubMed]
L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
[Crossref]
[PubMed]
S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref]
[PubMed]
Y. Fan, J. Sun, Q. Chen, M. Wang, and C. Zuo, “Adaptive denoising method for Fourier ptychographic microscopy,” Opt. Commun. 404, 23–31 (2017).
[Crossref]
F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Physics 2, 258 (2006).
[Crossref]
D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. Microscopy 135, 275–286 (1984).
[Crossref]
G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, highresolution fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]
G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
[Crossref]
[PubMed]
F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
[Crossref]
J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Rep. 8(1), 7669 (2018).
[Crossref]
[PubMed]
J. Sun, Q. Chen, J. Zhang, Y. Fan, and C. Zuo., “Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography,” Opt. Lett. 43(14), 3365–3368 (2018).
[Crossref]
[PubMed]
J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy, ” Sci. Reports, 7(1), 11777 (2017).
[Crossref]
J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Reports 7(1), 1187 (2017).
[Crossref]
W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning, ” Light 5(4), e16060 (2016).
[Crossref]
J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space, ” Opt. Express 24(14), 15765–15781 (2016).
[Crossref]
[PubMed]
S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref]
[PubMed]
S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref]
[PubMed]
G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, highresolution fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]
G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
[Crossref]
[PubMed]
J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Rep. 8(1), 7669 (2018).
[Crossref]
[PubMed]
J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Reports 7(1), 1187 (2017).
[Crossref]
J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy, ” Sci. Reports, 7(1), 11777 (2017).
[Crossref]
Y. Fan, J. Sun, Q. Chen, M. Wang, and C. Zuo, “Adaptive denoising method for Fourier ptychographic microscopy,” Opt. Commun. 404, 23–31 (2017).
[Crossref]
J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space, ” Opt. Express 24(14), 15765–15781 (2016).
[Crossref]
[PubMed]
C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy,” Opt. Express 24(18) 20724–20744 (2016).
[Crossref]
[PubMed]
C. Zuo, Q. Chen, W. Qu, and A. Asundi., “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10) 1724–1726 (2013).
[Crossref]
[PubMed]
C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref]
[PubMed]
J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]
S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
[Crossref]
[PubMed]
L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]
[PubMed]
V. Starkuviene and R. Pepperkok, “The potential of highcontent high-throughput microscopy in drug discovery,” Br. Journal pharmacology 152(1), 62–71 (2007).
[Crossref]
E. Glory and R. F. Murphy, “Automated subcellular location determination and high-throughput microscopy,” Dev. Cell 12(1), 7–16 (2007).
[Crossref]
[PubMed]
C. Bellair, C. Curl, B. Allman, P. Harris, A. Roberts, L. Delbridge, and K. Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microscopy, 214(6), 62–69 (2004).
[Crossref]
D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. Microscopy 135, 275–286 (1984).
[Crossref]
D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. Microscopy 133, 27–39 (1984).
[Crossref]
W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning, ” Light 5(4), e16060 (2016).
[Crossref]
G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol. 90, 87–115 (2008).
[Crossref]
T. N. Ford, K. K. Chu, and J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012).
[Crossref]
[PubMed]
G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, highresolution fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]
F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Physics 2, 258 (2006).
[Crossref]
Y. Fan, J. Sun, Q. Chen, M. Wang, and C. Zuo, “Adaptive denoising method for Fourier ptychographic microscopy,” Opt. Commun. 404, 23–31 (2017).
[Crossref]
C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy,” Opt. Express 24(18) 20724–20744 (2016).
[Crossref]
[PubMed]
L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
[Crossref]
[PubMed]
S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref]
[PubMed]
J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space, ” Opt. Express 24(14), 15765–15781 (2016).
[Crossref]
[PubMed]
C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref]
[PubMed]
W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution, ” Opt. Express, 18(11), 11181–11191 (2010).
[Crossref]
[PubMed]
C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref]
[PubMed]
C.J Sheppard, S. Roth, R. Heintzmann, M. Castello, G. Vicidomini, R. Chen, X. Chen, and A. Diaspro, “Interpretation of the optical transfer function: Significance for image scanning microscopy,” Opt. Express 24(24), 27280–27287 (2016).
[Crossref]
[PubMed]
J. Sun, Q. Chen, J. Zhang, Y. Fan, and C. Zuo., “Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography,” Opt. Lett. 43(14), 3365–3368 (2018).
[Crossref]
[PubMed]
Etienne Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref]
C. Zuo, Q. Chen, W. Qu, and A. Asundi., “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10) 1724–1726 (2013).
[Crossref]
[PubMed]
P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref]
[PubMed]
A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998).
[Crossref]
S. B. Mehta and C. J. Sheppard, “Quantitative phasegradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34(13), 1924–1926 (2009).
[Crossref]
[PubMed]
L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
[Crossref]
[PubMed]
G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
[Crossref]
[PubMed]
S. S. Kou, L. Waller, G. Barbastathis, P. Marquet, C. Depeursinge, and C. J. Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011).
[Crossref]
[PubMed]
F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
[Crossref]
J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Rep. 8(1), 7669 (2018).
[Crossref]
[PubMed]
J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Reports 7(1), 1187 (2017).
[Crossref]
J. Zhang, J. Sun, Q. Chen, J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy, ” Sci. Reports, 7(1), 11777 (2017).
[Crossref]
B. Kachar, “Asymmetric illumination contrast: a method of image formation for video light microscopy,” Science 227, 766–768 (1985).
[Crossref]
[PubMed]
H. Rose, “Nonstandard imaging methods in electron microscopy,” Ultramicroscopy 2, 251–267 (1977).
[Crossref]
[PubMed]
Mario Bertero and Patrizia Boccacci., Introduction to Inverse Problems in Imaging (CRC Press, 1998).
[Crossref]