Abstract

In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
IR Image upconversion using band-limited ASE illumination fiber sources

H. Maestre, A. J. Torregrosa, and J. Capmany
Opt. Express 24(8) 8581-8593 (2016)

Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence

Lichun Meng, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen, and Peter John Rodrigo
Opt. Express 26(19) 24712-24722 (2018)

Infrared upconversion for astronomical applications

M. M. Abbas, T. Kostiuk, and K. W. Ogilvie
Appl. Opt. 15(4) 961-970 (1976)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  2. S. Fan, F. Qi, T. Notake, K. Nawata, Y. Takida, T. Matsukawa, and H. Minamide, “Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal,” Opt. Express 23(6), 7611–7618 (2015).
    [Crossref] [PubMed]
  3. C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
    [Crossref] [PubMed]
  4. H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image upconversion using band-limited ASE illumination fiber sources,” Opt. Express 24(8), 8581–8593 (2016).
    [Crossref] [PubMed]
  5. H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image Upconversion Under Dual-Wavelength Laser Illumination,” IEEE Photonics J. 8(6), 1–8 (2016).
    [Crossref]
  6. K. Regelskis, J. Želudevičius, N. Gavrilin, and G. Račiukaitis, “Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal,” Opt. Express 20(27), 28544–28556 (2012).
    [Crossref] [PubMed]
  7. Y. L. Lee, Y.-C. Noh, C. Jung, T. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
    [Crossref] [PubMed]
  8. Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13(8), 2988–2993 (2005).
    [Crossref] [PubMed]
  9. J. Chang, Z. Yang, and Q. Sun, “Broadband mid-infrared difference frequency generation in uniform grating periodically poled lithium niobate,” Optik (Stuttg.) 126(11–12), 1123–1127 (2015).
    [Crossref]
  10. H. J. Maestre Vicente, A. J. Torregrosa, and J. Capmany, “Application of a temperature-gradient PPLN crystal for IR image up-conversion,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper JTu5A.61.
    [Crossref]
  11. L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2.,” Opt. Express 24(5), 5152–5161 (2016).
    [Crossref] [PubMed]
  12. J. Capmany, A. J. Torregrosa, H. Maestre, and M. L. Rico, “Miniaturized intra-cavity image up-conversion system based in a 1342 nm YVO4:Nd3+ laser using Type-II phase matching in a bulk KTP crystal combined with a polarizing beam splitter,” in 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2017), paper CD-14.5 THU.
    [Crossref]
  13. P. Malara, P. Maddaloni, G. Mincuzzi, S. De Nicola, and P. De Natale, “Non-collinear quasi phase matching and annular profiles in difference frequency generation with focused Gaussian beams,” Opt. Express 16(11), 8056–8066 (2008).
    [Crossref] [PubMed]
  14. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  15. R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4–6), 523–529 (1995).
    [Crossref]

2016 (3)

2015 (2)

J. Chang, Z. Yang, and Q. Sun, “Broadband mid-infrared difference frequency generation in uniform grating periodically poled lithium niobate,” Optik (Stuttg.) 126(11–12), 1123–1127 (2015).
[Crossref]

S. Fan, F. Qi, T. Notake, K. Nawata, Y. Takida, T. Matsukawa, and H. Minamide, “Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal,” Opt. Express 23(6), 7611–7618 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (2)

2008 (1)

2005 (1)

2003 (1)

1995 (1)

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4–6), 523–529 (1995).
[Crossref]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Capmany, J.

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image Upconversion Under Dual-Wavelength Laser Illumination,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image upconversion using band-limited ASE illumination fiber sources,” Opt. Express 24(8), 8581–8593 (2016).
[Crossref] [PubMed]

Chang, J.

J. Chang, Z. Yang, and Q. Sun, “Broadband mid-infrared difference frequency generation in uniform grating periodically poled lithium niobate,” Optik (Stuttg.) 126(11–12), 1123–1127 (2015).
[Crossref]

Dam, J. S.

C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

De Natale, P.

De Nicola, S.

Fan, S.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Fix, A.

Gavrilin, N.

Haas, R. A.

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4–6), 523–529 (1995).
[Crossref]

Høgstedt, L.

Hu, Q.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Jung, C.

Ko, D. K.

Ko, D.-K.

Lee, J.

Lee, Y. L.

Maddaloni, P.

Maestre, H.

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image Upconversion Under Dual-Wavelength Laser Illumination,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image upconversion using band-limited ASE illumination fiber sources,” Opt. Express 24(8), 8581–8593 (2016).
[Crossref] [PubMed]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Malara, P.

Matsukawa, T.

Minamide, H.

Mincuzzi, G.

Nawata, K.

Noh, Y. C.

Noh, Y.-C.

Notake, T.

Pedersen, C.

Qi, F.

Raciukaitis, G.

Regelskis, K.

Sun, Q.

J. Chang, Z. Yang, and Q. Sun, “Broadband mid-infrared difference frequency generation in uniform grating periodically poled lithium niobate,” Optik (Stuttg.) 126(11–12), 1123–1127 (2015).
[Crossref]

Takida, Y.

Tidemand-Lichtenberg, P.

Torregrosa, A. J.

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image Upconversion Under Dual-Wavelength Laser Illumination,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image upconversion using band-limited ASE illumination fiber sources,” Opt. Express 24(8), 8581–8593 (2016).
[Crossref] [PubMed]

Wirth, M.

Yang, Z.

J. Chang, Z. Yang, and Q. Sun, “Broadband mid-infrared difference frequency generation in uniform grating periodically poled lithium niobate,” Optik (Stuttg.) 126(11–12), 1123–1127 (2015).
[Crossref]

Yu, B. A.

Yu, T.

Želudevicius, J.

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

IEEE Photonics J. (1)

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image Upconversion Under Dual-Wavelength Laser Illumination,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Commun. (1)

R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113(4–6), 523–529 (1995).
[Crossref]

Opt. Express (8)

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2.,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

P. Malara, P. Maddaloni, G. Mincuzzi, S. De Nicola, and P. De Natale, “Non-collinear quasi phase matching and annular profiles in difference frequency generation with focused Gaussian beams,” Opt. Express 16(11), 8056–8066 (2008).
[Crossref] [PubMed]

S. Fan, F. Qi, T. Notake, K. Nawata, Y. Takida, T. Matsukawa, and H. Minamide, “Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal,” Opt. Express 23(6), 7611–7618 (2015).
[Crossref] [PubMed]

C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, and J. S. Dam, “Non-collinear upconversion of infrared light,” Opt. Express 22(23), 28027–28036 (2014).
[Crossref] [PubMed]

H. Maestre, A. J. Torregrosa, and J. Capmany, “IR Image upconversion using band-limited ASE illumination fiber sources,” Opt. Express 24(8), 8581–8593 (2016).
[Crossref] [PubMed]

K. Regelskis, J. Želudevičius, N. Gavrilin, and G. Račiukaitis, “Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal,” Opt. Express 20(27), 28544–28556 (2012).
[Crossref] [PubMed]

Y. L. Lee, Y.-C. Noh, C. Jung, T. Yu, D.-K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13(8), 2988–2993 (2005).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

J. Chang, Z. Yang, and Q. Sun, “Broadband mid-infrared difference frequency generation in uniform grating periodically poled lithium niobate,” Optik (Stuttg.) 126(11–12), 1123–1127 (2015).
[Crossref]

Other (2)

H. J. Maestre Vicente, A. J. Torregrosa, and J. Capmany, “Application of a temperature-gradient PPLN crystal for IR image up-conversion,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper JTu5A.61.
[Crossref]

J. Capmany, A. J. Torregrosa, H. Maestre, and M. L. Rico, “Miniaturized intra-cavity image up-conversion system based in a 1342 nm YVO4:Nd3+ laser using Type-II phase matching in a bulk KTP crystal combined with a polarizing beam splitter,” in 2017 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, (Optical Society of America, 2017), paper CD-14.5 THU.
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1       Effect on the upconverter angular response for single wavelength illumination when crystal temperature is either rised or reduced
» Visualization 2       Temporal evolution of the upconverted area when a thermal gradient of 30ºC is applied to the PPLN
» Visualization 3       Comparison between measured and calculated upconverted profiles

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the compact upconverter semimonolithic arquitecture where short focal length lenses are needed for compactness.
Fig. 2
Fig. 2 Coordinate system and important parameters for the thermal gradient PPLN calculations in a). Upconversion of by means of multiple-wavelength illumination under constant temperature operation in b), and conception of different crystal sections providing upconversion at different angles under thermal gradient operation and single-wavelength illumination in c).
Fig. 3
Fig. 3 Representation of the condition Δk’(θ,z) = 0 at wavelengths 1545, 1547, and 1549 nm for ΔT = 20° C in a) and at wavelengths 1547, 1549 and 1556.5 nm for ΔT = 50° C in b).
Fig. 4
Fig. 4 Numerically obtained upconversion efficiency η’(θ,λ) for several NL crystal temperature differences ΔT = 0, 40, 50 and 60° C.
Fig. 5
Fig. 5 Upconversion field-of-view broadening optimization for ΔT = 50° C. In a) η’(θ,λ) is optimized for λIR = 1549 nm. In b), when the IR incoming angular spectrum is considered, optimized profile takes place at λIR = 1552 nm.
Fig. 6
Fig. 6 Effect of different initial and final NL crystal temperature (TS1 and TS2) for a fixed ΔT = 50° C on the upconversion efficiency η’(θ,λIR).
Fig. 7
Fig. 7 In a) we show the simulated thermal gradient in the for different contact lengths between the hot/cold sources and the PPLN crystal. In b) it can be seen the measured temperature profile along the NL crystal using a thermal camera. A thermal image of the top view of the thermal gradient setup is plotted in c) and in d) a schematic of the side view.
Fig. 8
Fig. 8 Comparison between η’(θ,λIR) for the actual (figure on the left) and perfectly linear (figure on the right) thermal gradient for ΔT = 50° C.
Fig. 9
Fig. 9 Experimental setup for the upconversion of IR images under PPLN temperature gradient operation.
Fig. 10
Fig. 10 Enhancement of the upconverted area of the IR illuminated object after the application of a temperature gradient to the PPLN.
Fig. 11
Fig. 11 Increased field-of-view if compared to a) upconverted profile at perfect QPM, b) for ASE illumination and c) after application of linear temperature gradient to the PPLN for single-wavelength illumination.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I up (θ) F IR (θ) λ 1 λ 2 d λ IR η(θ, λ IR ) G IR ( λ IR ) .
I up (θ) F IR (θ)η'(θ, λ IR ) .
Δk'(θ,λ,T(z))= k pump k up cos( arcsin( k IR k up sin(θ) ) )+ k IR cos(θ)+ 2π Λ .
Δk'(θ,λ,T(z))=Δ k 0 + k IR 2 ( 1 k IR k up ) θ 2 .
η'(θ,λ) | 1 L 0 L' dz e 0 z iΔk'(θ,λ,T(z))dz' | 2 .

Metrics