Abstract

In order to suppress the viewing angle dependence of top emission organic light emitting diodes (TEOEDs) on a strong microcavity structure, we prepared multi-layered nano scattering film which was consisted with transparent planarizing layer and hazy crosslinked scattering layer. Through such an approach, we could obtain not only a stable color shift and luminance distribution with viewing angle but also a negligible pixel blur level. Meanwhile, we investigated a black tint level of TEOLEDs after attachment of circular polarizer (CP) on various nano scattering films because nano scattering film deteriorates a black level. We found that the black level could be improved from the black tint by reducing the refractive index difference between planarizing layer and scattering layer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency red top-emitting micro-cavity organic light emitting diodes

Mi Jin Park, Gyeong Heon Kim, Young Hoon Son, Hyeong Woo Bae, Ji Hoon Kong, and Jang Hyuk Kwon
Opt. Express 22(17) 19919-19929 (2014)

Light diffusing effects of nano and micro-structures on OLED with microcavity

Doo-Hee Cho, Jin-Wook Shin, Chul Woong Joo, Jonghee Lee, Seung Koo Park, Jaehyun Moon, Nam Sung Cho, Hye Yong Chu, and Jeong-Ik Lee
Opt. Express 22(S6) A1507-A1518 (2014)

Top-emitting organic light-emitting diodes

Simone Hofmann, Michael Thomschke, Björn Lüssem, and Karl Leo
Opt. Express 19(S6) A1250-A1264 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [Crossref]
  2. J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
    [Crossref]
  3. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
    [Crossref]
  4. Y. Im and J. Y. Lee, “Recent progress of green thermally activated delayed fluorescent emitters,” J. Info. Disp. 18(3), 101–117 (2017).
    [Crossref]
  5. S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
    [Crossref]
  6. Y. Kwon and C. Lee, “Non-interlayer hybrid white organic light-emitting diodes via a bipolar mixed host for the blue-fluorescent-emitting layer,” J. Info. Disp. 18(4), 153–157 (2017).
    [Crossref]
  7. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
    [Crossref]
  8. S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, “Degradation mechanisms and reactions in organic light-emitting devices,” Chem. Rev. 115(16), 8449–8503 (2015).
    [Crossref] [PubMed]
  9. C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
    [Crossref]
  10. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
    [Crossref]
  11. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
    [Crossref]
  12. S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
    [Crossref]
  13. M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
    [Crossref] [PubMed]
  14. C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
    [Crossref]
  15. J. Y. Kim and K. C. Choi, “Improvement in Outcoupling Efficiency and Image Blur of Organic Light-Emitting Diodes by Using Imprinted Microlens Arrays,” J. Disp. Technol. 7(7), 377–381 (2011).
    [Crossref]
  16. H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
    [Crossref]
  17. J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
    [Crossref]
  18. H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
    [Crossref]
  19. R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
    [Crossref]
  20. T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93(1), 19–22 (2003).
    [Crossref]
  21. S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
    [Crossref] [PubMed]
  22. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6Suppl 6), A1250–A1264 (2011).
    [Crossref] [PubMed]
  23. B. W. Lim and M. C. Suh, “Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes,” Nanoscale 6(23), 14446–14452 (2014).
    [Crossref] [PubMed]
  24. B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
    [Crossref] [PubMed]
  25. M. C. Suh, B. Pyo, B. W. Lim, and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron. 38, 316–322 (2016).
    [Crossref]
  26. N. S. Kim, W. Y. Lee, B. Pyo, and M. C. Suh, “Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film,” Org. Electron. 44, 232–237 (2017).
    [Crossref]
  27. H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
    [Crossref]
  28. O. Fichet, F. Vidal, J. Laskar, and D. Teyssié, “Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I,” Polymer (Guildf.) 46(1), 37–47 (2005).
    [Crossref]
  29. F. Vidal, O. Fichet, J. Laskar, and D. Teyssié, “Polysiloxane–Cellulose acetate butyrate cellulose interpenetrating polymers networks close to true IPNs on a large composition range. Part II,” Polymer (Guildf.) 47(11), 3747–3753 (2006).
    [Crossref]
  30. S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
    [Crossref]

2017 (4)

Y. Im and J. Y. Lee, “Recent progress of green thermally activated delayed fluorescent emitters,” J. Info. Disp. 18(3), 101–117 (2017).
[Crossref]

Y. Kwon and C. Lee, “Non-interlayer hybrid white organic light-emitting diodes via a bipolar mixed host for the blue-fluorescent-emitting layer,” J. Info. Disp. 18(4), 153–157 (2017).
[Crossref]

N. S. Kim, W. Y. Lee, B. Pyo, and M. C. Suh, “Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film,” Org. Electron. 44, 232–237 (2017).
[Crossref]

H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
[Crossref]

2016 (2)

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

M. C. Suh, B. Pyo, B. W. Lim, and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron. 38, 316–322 (2016).
[Crossref]

2015 (3)

J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
[Crossref]

S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, “Degradation mechanisms and reactions in organic light-emitting devices,” Chem. Rev. 115(16), 8449–8503 (2015).
[Crossref] [PubMed]

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

2014 (2)

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

B. W. Lim and M. C. Suh, “Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes,” Nanoscale 6(23), 14446–14452 (2014).
[Crossref] [PubMed]

2012 (2)

S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
[Crossref]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

2011 (2)

J. Y. Kim and K. C. Choi, “Improvement in Outcoupling Efficiency and Image Blur of Organic Light-Emitting Diodes by Using Imprinted Microlens Arrays,” J. Disp. Technol. 7(7), 377–381 (2011).
[Crossref]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

2010 (2)

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

2008 (1)

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

2007 (2)

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

2006 (1)

F. Vidal, O. Fichet, J. Laskar, and D. Teyssié, “Polysiloxane–Cellulose acetate butyrate cellulose interpenetrating polymers networks close to true IPNs on a large composition range. Part II,” Polymer (Guildf.) 47(11), 3747–3753 (2006).
[Crossref]

2005 (2)

O. Fichet, F. Vidal, J. Laskar, and D. Teyssié, “Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I,” Polymer (Guildf.) 46(1), 37–47 (2005).
[Crossref]

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
[Crossref]

2004 (1)

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

2003 (2)

T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93(1), 19–22 (2003).
[Crossref]

H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
[Crossref]

2002 (1)

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

2000 (1)

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

1994 (1)

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

1987 (1)

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Abrakhi, S.

S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
[Crossref]

Adachi, C.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Barnes, W. L.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Beierlein, T.

H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
[Crossref]

Brütting, W.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Bulovic, V.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

Burrows, P. E.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

Cantin, S.

S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
[Crossref]

Cha, S. J.

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

Chen, K.-Y.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Chen, S.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Cho, T.-Y.

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

Choi, K. C.

J. Y. Kim and K. C. Choi, “Improvement in Outcoupling Efficiency and Image Blur of Organic Light-Emitting Diodes by Using Imprinted Microlens Arrays,” J. Disp. Technol. 7(7), 377–381 (2011).
[Crossref]

Cinà, S.

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
[Crossref]

Deng, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Doyeux, H.

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
[Crossref]

Fan, Q.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Féry, C.

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
[Crossref]

Fichet, O.

S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
[Crossref]

F. Vidal, O. Fichet, J. Laskar, and D. Teyssié, “Polysiloxane–Cellulose acetate butyrate cellulose interpenetrating polymers networks close to true IPNs on a large composition range. Part II,” Polymer (Guildf.) 47(11), 3747–3753 (2006).
[Crossref]

O. Fichet, F. Vidal, J. Laskar, and D. Teyssié, “Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I,” Polymer (Guildf.) 46(1), 37–47 (2005).
[Crossref]

Forrest, S. R.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

Frischeisen, J.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Fujikawa, H.

T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93(1), 19–22 (2003).
[Crossref]

Furno, M.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Han, J. I.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Han, N. S.

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

Ho, Y.-H.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Hofmann, S.

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Hsieh, H.-H.

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

Hsu, S.-C.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Huang, S.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Huang, W.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Im, Y.

Y. Im and J. Y. Lee, “Recent progress of green thermally activated delayed fluorescent emitters,” J. Info. Disp. 18(3), 101–117 (2017).
[Crossref]

Jeon, Y. M.

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

Joo, C. W.

H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
[Crossref]

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

Karg, S.

H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
[Crossref]

Kim, H. S.

H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
[Crossref]

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim and K. C. Choi, “Improvement in Outcoupling Efficiency and Image Blur of Organic Light-Emitting Diodes by Using Imprinted Microlens Arrays,” J. Disp. Technol. 7(7), 377–381 (2011).
[Crossref]

Kim, J.-B.

J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
[Crossref]

Kim, J.-J.

J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
[Crossref]

Kim, K.-H.

J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
[Crossref]

Kim, N. S.

N. S. Kim, W. Y. Lee, B. Pyo, and M. C. Suh, “Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film,” Org. Electron. 44, 232–237 (2017).
[Crossref]

M. C. Suh, B. Pyo, B. W. Lim, and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron. 38, 316–322 (2016).
[Crossref]

Kondakov, D.

S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, “Degradation mechanisms and reactions in organic light-emitting devices,” Chem. Rev. 115(16), 8449–8503 (2015).
[Crossref] [PubMed]

Krummacher, B. C.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Kwon, B.-H.

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

Kwon, Y.

Y. Kwon and C. Lee, “Non-interlayer hybrid white organic light-emitting diodes via a bipolar mixed host for the blue-fluorescent-emitting layer,” J. Info. Disp. 18(4), 153–157 (2017).
[Crossref]

Laskar, J.

F. Vidal, O. Fichet, J. Laskar, and D. Teyssié, “Polysiloxane–Cellulose acetate butyrate cellulose interpenetrating polymers networks close to true IPNs on a large composition range. Part II,” Polymer (Guildf.) 47(11), 3747–3753 (2006).
[Crossref]

O. Fichet, F. Vidal, J. Laskar, and D. Teyssié, “Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I,” Polymer (Guildf.) 46(1), 37–47 (2005).
[Crossref]

Lee, C.

Y. Kwon and C. Lee, “Non-interlayer hybrid white organic light-emitting diodes via a bipolar mixed host for the blue-fluorescent-emitting layer,” J. Info. Disp. 18(4), 153–157 (2017).
[Crossref]

Lee, C. J.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Lee, J.

H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
[Crossref]

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

Lee, J. Y.

Y. Im and J. Y. Lee, “Recent progress of green thermally activated delayed fluorescent emitters,” J. Info. Disp. 18(3), 101–117 (2017).
[Crossref]

Lee, J.-H.

J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
[Crossref]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Lee, J.-I.

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

Lee, W. Y.

N. S. Kim, W. Y. Lee, B. Pyo, and M. C. Suh, “Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film,” Org. Electron. 44, 232–237 (2017).
[Crossref]

Leo, K.

S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, “Degradation mechanisms and reactions in organic light-emitting devices,” Chem. Rev. 115(16), 8449–8503 (2015).
[Crossref] [PubMed]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Li, B.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Lim, B. W.

M. C. Suh, B. Pyo, B. W. Lim, and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron. 38, 316–322 (2016).
[Crossref]

B. W. Lim and M. C. Suh, “Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes,” Nanoscale 6(23), 14446–14452 (2014).
[Crossref] [PubMed]

Lin, C.-Y.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Lin, H.-Y.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Liu, C.-C.

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

Liu, S.-H.

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

Lüssem, B.

S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, “Degradation mechanisms and reactions in organic light-emitting devices,” Chem. Rev. 115(16), 8449–8503 (2015).
[Crossref] [PubMed]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

McCarty, D. M.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

Meerheim, R.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

Möller, S.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Moon, C.-K.

J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
[Crossref]

Moon, D. G.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Nomura, H.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Nowy, S.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Park, S. R.

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

Peng, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Péralta, S.

S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
[Crossref]

Pode, R. B.

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Pyo, B.

H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
[Crossref]

N. S. Kim, W. Y. Lee, B. Pyo, and M. C. Suh, “Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film,” Org. Electron. 44, 232–237 (2017).
[Crossref]

M. C. Suh, B. Pyo, B. W. Lim, and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron. 38, 316–322 (2016).
[Crossref]

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

Racine, B.

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
[Crossref]

Reineke, S.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Reinke, N. A.

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

Riel, H.

H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
[Crossref]

Rieß, W.

H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
[Crossref]

Ruhstaller, B.

H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
[Crossref]

Safonov, A.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Samuel, I. D. W.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Sapochak, L. S.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

Scholz, S.

S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, “Degradation mechanisms and reactions in organic light-emitting devices,” Chem. Rev. 115(16), 8449–8503 (2015).
[Crossref] [PubMed]

Shiga, T.

T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93(1), 19–22 (2003).
[Crossref]

Song, J. K.

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

Suh, M. C.

H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
[Crossref]

N. S. Kim, W. Y. Lee, B. Pyo, and M. C. Suh, “Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film,” Org. Electron. 44, 232–237 (2017).
[Crossref]

M. C. Suh, B. Pyo, B. W. Lim, and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron. 38, 316–322 (2016).
[Crossref]

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

B. W. Lim and M. C. Suh, “Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes,” Nanoscale 6(23), 14446–14452 (2014).
[Crossref] [PubMed]

Taga, Y.

T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93(1), 19–22 (2003).
[Crossref]

Tanaka, H.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Tang, C. W.

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Teyssié, D.

S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
[Crossref]

F. Vidal, O. Fichet, J. Laskar, and D. Teyssié, “Polysiloxane–Cellulose acetate butyrate cellulose interpenetrating polymers networks close to true IPNs on a large composition range. Part II,” Polymer (Guildf.) 47(11), 3747–3753 (2006).
[Crossref]

O. Fichet, F. Vidal, J. Laskar, and D. Teyssié, “Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I,” Polymer (Guildf.) 46(1), 37–47 (2005).
[Crossref]

Thompson, M. E.

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

Thomschke, M.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6Suppl 6), A1250–A1264 (2011).
[Crossref] [PubMed]

Vanslyke, S. A.

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Vaufrey, D.

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
[Crossref]

Vidal, F.

F. Vidal, O. Fichet, J. Laskar, and D. Teyssié, “Polysiloxane–Cellulose acetate butyrate cellulose interpenetrating polymers networks close to true IPNs on a large composition range. Part II,” Polymer (Guildf.) 47(11), 3747–3753 (2006).
[Crossref]

O. Fichet, F. Vidal, J. Laskar, and D. Teyssié, “Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I,” Polymer (Guildf.) 46(1), 37–47 (2005).
[Crossref]

Wasey, J. A. E.

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Wei, M.-K.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Wu, C.-C.

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

Xie, J.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Xie, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Yang, C. J.

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

Zhang, Q.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Adv. Mater. (1)

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent Developments in Top-Emitting Organic Light-Emitting Diodes,” Adv. Mater. 22(46), 5227–5239 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65(23), 2922–2924 (1994).
[Crossref]

C. Féry, B. Racine, D. Vaufrey, H. Doyeux, and S. Cinà, “Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes,” Appl. Phys. Lett. 87(21), 213502 (2005).
[Crossref]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97(25), 253305 (2010).
[Crossref]

C. J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: Simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution,” Appl. Phys. Lett. 91(25), 253508 (2007).
[Crossref]

H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82(3), 466–468 (2003).
[Crossref]

R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, “Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer,” Appl. Phys. Lett. 84(23), 4614–4616 (2004).
[Crossref]

Chem. Rev. (1)

S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, “Degradation mechanisms and reactions in organic light-emitting devices,” Chem. Rev. 115(16), 8449–8503 (2015).
[Crossref] [PubMed]

Colloid Polym. Sci. (1)

S. Abrakhi, S. Péralta, S. Cantin, O. Fichet, and D. Teyssié, “Synthesis and characterization of photosensitive cinnamate-modified cellulose acetate butyrate spin-coated or network derivatives,” Colloid Polym. Sci. 290(5), 423–434 (2012).
[Crossref]

Dyes Pigments (1)

S. J. Cha, N. S. Han, J. K. Song, S. R. Park, Y. M. Jeon, and M. C. Suh, “Efficient deep blue fluorescent emitter showing high external quantum efficiency,” Dyes Pigments 120, 200–207 (2015).
[Crossref]

J. Appl. Phys. (3)

T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93(1), 19–22 (2003).
[Crossref]

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008).
[Crossref]

J. Disp. Technol. (1)

J. Y. Kim and K. C. Choi, “Improvement in Outcoupling Efficiency and Image Blur of Organic Light-Emitting Diodes by Using Imprinted Microlens Arrays,” J. Disp. Technol. 7(7), 377–381 (2011).
[Crossref]

J. Info. Disp. (2)

Y. Kwon and C. Lee, “Non-interlayer hybrid white organic light-emitting diodes via a bipolar mixed host for the blue-fluorescent-emitting layer,” J. Info. Disp. 18(4), 153–157 (2017).
[Crossref]

Y. Im and J. Y. Lee, “Recent progress of green thermally activated delayed fluorescent emitters,” J. Info. Disp. 18(3), 101–117 (2017).
[Crossref]

Nano Lett. (1)

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12(1), 424–428 (2012).
[Crossref] [PubMed]

Nanoscale (2)

B. W. Lim and M. C. Suh, “Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes,” Nanoscale 6(23), 14446–14452 (2014).
[Crossref] [PubMed]

B. Pyo, C. W. Joo, H. S. Kim, B.-H. Kwon, J.-I. Lee, J. Lee, and M. C. Suh, “A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure,” Nanoscale 8(16), 8575–8582 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8(4), 326–332 (2014).
[Crossref]

Opt. Commun. (1)

J. A. E. Wasey, A. Safonov, I. D. W. Samuel, and W. L. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun. 183(1-4), 109–121 (2000).
[Crossref]

Opt. Express (1)

Org. Electron. (4)

J.-B. Kim, J.-H. Lee, C.-K. Moon, K.-H. Kim, and J.-J. Kim, “Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability,” Org. Electron. 17, 115–120 (2015).
[Crossref]

M. C. Suh, B. Pyo, B. W. Lim, and N. S. Kim, “Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component,” Org. Electron. 38, 316–322 (2016).
[Crossref]

N. S. Kim, W. Y. Lee, B. Pyo, and M. C. Suh, “Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film,” Org. Electron. 44, 232–237 (2017).
[Crossref]

H. S. Kim, C. W. Joo, B. Pyo, J. Lee, and M. C. Suh, “Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films,” Org. Electron. 40, 88–96 (2017).
[Crossref]

Polymer (Guildf.) (2)

O. Fichet, F. Vidal, J. Laskar, and D. Teyssié, “Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I,” Polymer (Guildf.) 46(1), 37–47 (2005).
[Crossref]

F. Vidal, O. Fichet, J. Laskar, and D. Teyssié, “Polysiloxane–Cellulose acetate butyrate cellulose interpenetrating polymers networks close to true IPNs on a large composition range. Part II,” Polymer (Guildf.) 47(11), 3747–3753 (2006).
[Crossref]

Proc. SPIE (1)

H.-Y. Lin, J.-H. Lee, M.-K. Wei, K.-Y. Chen, S.-C. Hsu, Y.-H. Ho, and C.-Y. Lin, “Optical characteristics of the OLED with microlens array film attachment,” Proc. SPIE 6655, 66551H (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of multilayered scattering film fabrication.
Fig. 2
Fig. 2 (a) Haze-wavelength and (b) parallel transmittance-wavelength characteristics of multilayered films.
Fig. 3
Fig. 3 Photographic image of solutions for coating scattering film; The solution including crosslinker, Desmodur® N3300, shows hazier behavior than the solution without crosslinker.
Fig. 4
Fig. 4 Ray tracing simulation of the parallel incident lights during passing through the glass; R.I. = 1.50 (a) without any scattering film, (b) with 4 μm thickness single layer scattering film; R.I. = 1.48, (c) with multilayered scattering film by coating 3 μm thickness high refractive index material; R.I. = 1.83 as planarizing layer on the scattering layer, (d) with multilayered scattering film by coating 3 μm thickness low refractive index material; R.I. = 1.37 as planarizing layer on the scattering layer. The scattering film was consisted with hexagonal close packed concave hemispherical patterns with a diameter of 1 μm.
Fig. 5
Fig. 5 FE-SEM images: (a) the front of NPF and (b) the front of x-NPF, (c) the cross section of the NPF, (d) the cross section of multilayered film by overcoating high refractive index material on the NPF, (e) the cross section of multilayered film by overcoating high refractive index material on the x-NPF, and (f) the cross section of multilayered film by overcoating low refractive index material on the x-NPF, respectively. The insets in (e) and (f) are the magnified images of the boundary between planarizing layer and x-NPF.
Fig. 6
Fig. 6 Chemical structures of (a) CAB and (b) Desmodur® N3300. (c) crosslinking reaction of CAB and Desmodur® N3300; The urethane bonding (-NHCOO-) is formed by reaction of hydroxyl groups in CAB and isocyanate groups in Desmodur® N3300.
Fig. 7
Fig. 7 (a) J-V-L characteristics of devices; (b) luminance-current efficiency characteristics of devices; (c) luminance-power efficiency characteristics of devices; (d) normalized angular luminance distribution of devices.
Fig. 8
Fig. 8 Calculation of transmittance of flat multilayered film by applying planarizing layer with various R.I.; Inset image is transmittance calculation condition.
Fig. 9
Fig. 9 (a) Color shift (Δu’v’ in CIE1976 color space) of devices with viewing angle; (b) EL wavelength shift of Device A; (c) EL wavelength shift of Device B; (d) EL wavelength shift of Device C; (e) EL wavelength shift of Device D; (f) EL wavelength shift of Device E.
Fig. 10
Fig. 10 (a) J-L characteristics of devices; (b) luminance-current efficiency characteristics of devices; (c) luminance-power efficiency characteristics of devices; (d) normalized angular luminance distribution.
Fig. 11
Fig. 11 (a) Color shift (Δu’v’ in CIE1976 color space) of devices having CP with viewing angle; (b) EL wavelength shift of Device A’; (c) EL wavelength shift of Device B’; (d) EL wavelength shift of Device C’; (e) EL wavelength shift of Device D’; (f) EL wavelength shift of Device E’.
Fig. 12
Fig. 12 (a) Electroluminescent pixel photographic image of various devices; (b) brightness profile conversion from photographic image; (c) normalized brightness profiles from pixel edge position. The TEOLED pixel size was 4 mm2 (2 mm x2 mm).
Fig. 13
Fig. 13 The black color (turn off condition) photographical images of Device A’, Device B’, Device C’, Device D’, Device E’, and Device F’.

Tables (3)

Tables Icon

Table 1 The optical characteristics of scattering films deposited on the GL for encapsulation

Tables Icon

Table 2 The optical characteristics summary of devices

Tables Icon

Table 3 The optical characteristics summary of devices including CP

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F W H M = λ 2 2 L c a v × 1 R b R t π 4 R b R t
I ( λ , θ ) = T t [ 1 + R b + 2 R b cos ( ϕ b + 4 π z cos ( θ o r g , E M L ) λ ) ] ( 1 R b R t ) 2 + 4 R b R t sin 2 ( Δ ϕ 2 ) I 0 ( λ )
; Δ ϕ = ϕ b ϕ t + i 4 π n i d i cos ( θ o r g , i ) λ
T s = 2 n 1 cos θ 1 n 1 cos θ 1 + n 2 cos θ 2
T p = 2 n 1 cos θ 1 n 1 cos θ 2 + n 2 cos θ 1
Δ u ' v ' = ( u ' a u ' 0 ) 2 + ( v ' a v ' 0 ) 2

Metrics