Abstract

we report on an integrated InP based polarization rotator scheme using the plasmonic effect. It operates as a half-wave retarder in ridge waveguide structure. The rotation angle of the eigenmode axes of the half-wave retarder waveguide is determined by the position off a bottom corner of a metal layer placed above the waveguide core in the upper cladding region. The simple rotator structure enables an easy and tolerant fabrication process. The length of the fabricated device is less than 50 μm, and a polarization extinction ratio (PER) of 20 dB has been achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Active control of polarization state of the light in InP waveguide

Shinmo An and O-Kyun Kwon
Opt. Express 27(26) 37806-37815 (2019)

Highly efficient passive InP polarization rotator-splitter

Shahram Keyvaninia, Hendrik Boerma, Markus Wössner, Felix Ganzer, Patrick Runge, and Martin Schell
Opt. Express 27(18) 25872-25881 (2019)

Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits

Masaru Zaitsu, Takuo Tanemura, Akio Higo, and Yoshiaki Nakano
Opt. Express 21(6) 6910-6918 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
    [Crossref]
  2. S. Michel, “Why complex modulated optical signals? ” Lightwave 1, 18 (2013).
  3. T. Optical and I. Forum, Technology Options for 400G Implementation, in Optical Networking Forum (OIF), OIF-Tech-Options-400G-01.0. July (2015).
  4. Optical Internetworking Forum, Implementation Agreement for Integrated Polarization Multiplexed Quadrature Modulated Transmitters v01.1 (2013).
  5. H. El-Refaei, D. Yevick, and T. Jones, “Slanted-Rib Waveguide InGaAsP – InP Polarization Converters,” J. Lightwave Technol. 22(5), 1352–1357 (2004).
    [Crossref]
  6. U. Khalique, Y. C. Zhu, J. J. G. M. van der Tol, L. M. Augustin, R. Hanfoug, F. H. Groen, P. J. van Veldhoven, M. K. Smit, M. van de Moosdijk, W. de Laat, and K. Simon, “Ultrashort Polarization Converter on InP/InGaAsP Fabricated by Optical Lithography,” in Integrated Photonics Research and Applications (Optical Society of America, 2005), p. IWA3.
  7. L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short Polarization Converter Optimized for Active – Passive Integration in InGaAsP – InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
    [Crossref]
  8. M. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, and T. Krauss, “Compact polarization converter in InP-based material,” Opt. Express 13(13), 5040–5045 (2005).
    [Crossref] [PubMed]
  9. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [Crossref]
  10. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
    [Crossref]
  11. B. M. Holmes and D. C. Hutchin, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
    [Crossref]
  12. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16(4), 2628–2635 (2008).
    [Crossref] [PubMed]
  13. C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
    [Crossref]
  14. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
    [Crossref] [PubMed]
  15. J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
    [Crossref]
  16. L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [Crossref] [PubMed]
  17. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  18. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  19. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
    [Crossref] [PubMed]
  20. J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
    [Crossref]
  21. J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of an integrated hybrid plasmonic polarization rotator,” Opt. Lett. 38(20), 4054–4057 (2013).
    [Crossref] [PubMed]
  22. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
    [Crossref] [PubMed]
  23. S. Kim and M. Qi, “Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 23(8), 9968–9978 (2015).
    [Crossref] [PubMed]
  24. Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
    [Crossref] [PubMed]
  25. S. An, H.-S. Lee, Y.-B. Jeong, Y. C. Jun, S. G. Lee, S.-G. Park, H. Lee, and O. Beom-Hoan, “Nanofocusing of light using three-dimensional plasmonic mode conversion,” Opt. Express 21(23), 27816–27825 (2013).
    [Crossref] [PubMed]
  26. Z. Chen, L. Yan, W. Pan, B. Luo, Y. Guo, H. Jiang, A. Yi, Y. Sun, and X. Wu, “Transmission of multi-polarization-multiplexed signals: another freedom to explore?” Opt. Express 21(9), 11590–11605 (2013).
    [Crossref] [PubMed]

2017 (1)

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (4)

2012 (2)

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
[Crossref] [PubMed]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

2011 (4)

2010 (2)

J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[Crossref]

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[Crossref]

2008 (2)

2007 (1)

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short Polarization Converter Optimized for Active – Passive Integration in InGaAsP – InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

2006 (1)

B. M. Holmes and D. C. Hutchin, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

2005 (2)

2004 (1)

1996 (1)

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Aamer, M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Agarwal, A. M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Aitchison, J. S.

An, S.

Augustin, L. M.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short Polarization Converter Optimized for Active – Passive Integration in InGaAsP – InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

Baehr-Jones, T.

Beckett, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[Crossref]

Beom-Hoan, O.

Berthold, J.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[Crossref]

Boertjes, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[Crossref]

Bolla, L.

Bowers, J. E.

Brimont, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Caspers, J. N.

Chee, J.

Chen, L.

Chen, S.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
[Crossref]

Chen, Y.-K.

Chen, Z.

Dai, D.

Ding, Y.

Doerr, C. R.

El-Refaei, H.

Fang, Q.

Fedeli, J. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Fukuda, H.

Geluk, E. J.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short Polarization Converter Optimized for Active – Passive Integration in InGaAsP – InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

Groen, F. H.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Guan, H.

Guo, Y.

Gutierrez, A. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Hakansson, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Hamacher, M.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Han, Z.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Haus, H. A.

Heidrich, H.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Hochberg, M.

Holmes, B. M.

B. M. Holmes and D. C. Hutchin, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

Hutchin, D. C.

B. M. Holmes and D. C. Hutchin, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

Hvam, J. M.

Itabashi, S.

Jeong, Y.-B.

Jiang, H.

Jones, T.

Jun, Y. C.

Kim, M.-H.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Kim, S.

Kotlyar, M.

Krauss, T.

Kwong, D.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
[Crossref]

Kwong, D. L.

J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[Crossref]

Laperle, C.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[Crossref]

Lee, H.

Lee, H.-S.

Lee, S. G.

Li, Z.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Lim, A. E.-J.

Liu, L.

Lo, G.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
[Crossref]

Lo, G. Q.

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
[Crossref] [PubMed]

J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[Crossref]

Lo, G.-Q.

Loncar, M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Lu, M.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Luo, B.

Michel, S.

S. Michel, “Why complex modulated optical signals? ” Lightwave 1, 18 (2013).

Midrio, M.

Moerman, I.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Mojahedi, M.

Novack, A.

O’Faolain, L.

Overvig, A. C.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Pan, W.

Park, S.-G.

Pascher, W. W.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Qi, M.

Roberts, K.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[Crossref]

Roelkens, G.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Sanchis, P.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Shi, R.

Shinojima, H.

Shrestha, S.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Smit, M. K.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short Polarization Converter Optimized for Active – Passive Integration in InGaAsP – InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Spiekman, L. H.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Stein, A.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Streshinsky, M.

Sun, Y.

Tsuchizawa, T.

van Dam, C.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

van der Tol, J. J. G. M.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short Polarization Converter Optimized for Active – Passive Integration in InGaAsP – InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

van Ham, F. P. G. M.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Vermeulen, D.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

Wang, C.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Wang, Z.

Watanabe, T.

Watts, M. R.

Weinert, C. M.

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

Wu, X.

Yamada, K.

Yan, L.

Yevick, D.

Yi, A.

Yu, M.

J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[Crossref]

Yu, N.

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Yvind, K.

Zhang, H.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
[Crossref]

Zhang, J.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
[Crossref]

J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[Crossref]

Zhu, S.

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
[Crossref] [PubMed]

J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
[Crossref]

IEEE Commun. Mag. (1)

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (5)

J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Lo, and D. Kwong, “An Ultracompact Surface Plasmon Polariton-Effect-Based Polarization Rotator,” IEEE Photonics Technol. Lett. 23(21), 1606–1608 (2011).
[Crossref]

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short Polarization Converter Optimized for Active – Passive Integration in InGaAsP – InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
[Crossref]

B. M. Holmes and D. C. Hutchin, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel Compact Polarization Converters Based on Ultra Short Bends,” IEEE Photonics Technol. Lett. 8(10), 1346–1348 (1996).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Lightwave (1)

S. Michel, “Why complex modulated optical signals? ” Lightwave 1, 18 (2013).

Nat. Nanotechnol. (1)

Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Opt. Express (9)

M. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, and T. Krauss, “Compact polarization converter in InP-based material,” Opt. Express 13(13), 5040–5045 (2005).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16(4), 2628–2635 (2008).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[Crossref] [PubMed]

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
[Crossref] [PubMed]

Z. Chen, L. Yan, W. Pan, B. Luo, Y. Guo, H. Jiang, A. Yi, Y. Sun, and X. Wu, “Transmission of multi-polarization-multiplexed signals: another freedom to explore?” Opt. Express 21(9), 11590–11605 (2013).
[Crossref] [PubMed]

S. An, H.-S. Lee, Y.-B. Jeong, Y. C. Jun, S. G. Lee, S.-G. Park, H. Lee, and O. Beom-Hoan, “Nanofocusing of light using three-dimensional plasmonic mode conversion,” Opt. Express 21(23), 27816–27825 (2013).
[Crossref] [PubMed]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

S. Kim and M. Qi, “Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 23(8), 9968–9978 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Other (3)

T. Optical and I. Forum, Technology Options for 400G Implementation, in Optical Networking Forum (OIF), OIF-Tech-Options-400G-01.0. July (2015).

Optical Internetworking Forum, Implementation Agreement for Integrated Polarization Multiplexed Quadrature Modulated Transmitters v01.1 (2013).

U. Khalique, Y. C. Zhu, J. J. G. M. van der Tol, L. M. Augustin, R. Hanfoug, F. H. Groen, P. J. van Veldhoven, M. K. Smit, M. van de Moosdijk, W. de Laat, and K. Simon, “Ultrashort Polarization Converter on InP/InGaAsP Fabricated by Optical Lithography,” in Integrated Photonics Research and Applications (Optical Society of America, 2005), p. IWA3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Dual polarization division multiplexed transmitter.
Fig. 2
Fig. 2 InP polarization rotator. The eigenmode axes of the waveguide are rotated in the diagonal direction (45° rotation) with respect to the position of a bottom corner of the metal (Au) layer above the core. The rotated eigenmode axes in the waveguide behave as a birefringent material. The bottom insets show the electric field intensity of the rotated eigenmodes for InP ridge waveguide.
Fig. 3
Fig. 3 Simulation condition of InP polarization rotator.
Fig. 4
Fig. 4 Schematic diagram of the polarization rotator structure. (a) Whole device structure. Linearly polarized TE/TM modes launched into the device pass through the polarization rotator and their polarity is converted to the orthogonal state (TM/TE). (b) Isometric view of the polarization rotator. (c) Cross-sectional view of the rotator. Corner depth in the topcladding of 370-nm thickness is 200 nm and shifted 100 nm from the waveguide center. (d) Electric field distributions of the rotated fundamental eigenmodes of the rotator.
Fig. 5
Fig. 5 Contour map of the TE power ratio with respect to a topcladding thickness of 375 nm, partial etch depth along the X-axis, and metal position shift of the Y-axis. The inset indicates XY-axes parameters with respect to the topcladding layer etching condition. The contour map distribution describes the fabrication error tolerance. A TE power of 50% means an ideal 45° rotation of the eigenmode axes. The green region represents the deviation angle within ± 3°, corresponding to the extinction ratio of 20.49 dB with a fabrication tolerance of more than 200 nm in toplcadding etching conditions.
Fig. 6
Fig. 6 Three-dimensional simulation results of the transmission characteristics of the polarization rotator. Figure 6(a) shows the transmitted optical power (TE–blue, TM–red dashed lines) when launching the TE mode into the device. The maximum conversion and extinction ratio efficiency is obtained at a device length of 47 μm of the device length. The converted TM power has a −2.5 dB loss due to metal absorption loss. The electric field intensity distribution of the TE (Ex) mode and TM (Ey) mode are shown in Figs. 6(b) and 6(c), respectively.
Fig. 7
Fig. 7 Fabrication process of InP polarization rotator.
Fig. 8
Fig. 8 SEM image of the fabricated InP polarization rotator.
Fig. 9
Fig. 9 Schematic of the characterization setup. ECL: external cavity laser. PBS: polarization beam splitter. λ/4, λ/2: rotating wave plates. FR: fiber rotator, OPM: optical power meter.
Fig. 10
Fig. 10 Transmission spectrum of the polarization rotator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| E x | 2 d x d y ( | E x | 2 + | E y | 2 ) d x d y × 100 %

Metrics