Abstract

We demonstrate the design and fabrication of multichannel fibre Bragg gratings (FBGs) with aperiodic channel spacings. These will be suitable for the suppression of specific spectral lines such as OH emission lines in the near infrared (NIR) which degrade ground based astronomical imaging. We discuss the design process used to meet a given specification and the fabrication challenges that can give rise to errors in the final manufactured device. We propose and demonstrate solutions to meet these challenges.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating

J. Bland-Hawthorn, M. Englund, and G. Edvell
Opt. Express 12(24) 5902-5909 (2004)

Optimization algorithm for ultrabroadband multichannel aperiodic fiber Bragg grating filters

J. Bland-Hawthorn, A. Buryak, and K. Kolossovski
J. Opt. Soc. Am. A 25(1) 153-158 (2008)

A technique for mitigating the effect of the writing-beam profile on fibre Bragg grating fabrication

Elena G. Turitsyna, Adenowo Gbadebo, and John A. R. Williams
Opt. Express 23(10) 12628-12635 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Ellis and J. Bland-Hawthorn, “Speciality optical fibers for advanced astronomical instrumentation,” SPIE Newsroom pp. 2–5 (SPIE,2015).
  2. K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
    [Crossref]
  3. S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
    [Crossref]
  4. J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12(24), 5902–5909 (2004).
    [Crossref] [PubMed]
  5. T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
    [Crossref]
  6. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” in “OE/FIBERS ’89,”R. P. DePaula and E. Udd, eds. (International Society for Optics and Photonics, 1990), pp. 98–107.
  7. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  8. K. Hill, B. Malo, F. Bilodeau, and D. Johnson, “Photosensitivity in optical Fibres,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
    [Crossref]
  9. M. J. Cole, T. Widdowson, and A. D. Ellis, “10cm chirped fibre Bragg grating for dispersion compensation at 10Gbit/s over 400 km,” Electron. Lett. 31(25), 2203–2204 (1995).
    [Crossref]
  10. M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
    [Crossref]
  11. I. J. F. Brennan, D. LaBrake, G. A. Beauchesne, and R. P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” U. S. PatentUS5912999 (1999).
  12. M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
    [Crossref]
  13. Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
    [Crossref]
  14. Y. Liu, J. Pan, and C. Gu, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916 (2004).
    [Crossref]
  15. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
    [Crossref]
  16. A. Buryak, K. Kolossovski, and D. Y. Stepanov, “Improved multi channel grating design,” PatentWO2003079083A1 (2003).
  17. C. L. Liou, L. A. Wang, and M. C. Shih, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A Mater. Sci. Process. 64(2), 191–197 (1997).
    [Crossref]
  18. A. A. Gbadebo, E. G. Turitsyna, and J. A. R. Williams, “Experimental Comparison of Differing Design Approaches for Multichannel Fibre Bragg Gratings,” The European Conference on Lasers and Electro-Optics 854, 12110 (2015).
  19. A. Gbadebo, E. Turitsyna, and J. Williams, “Experimental Demonstration of Real-time correction of writing errors during Fibre-Bragg grating fabrication,” in “Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP),” vol. 3 (OSA, 2016), paper BTh1B.2.
    [Crossref]
  20. S. Loranger and R. Kashyap, “Fiber Imperfections and their Impact on the Performance of Fiber Grating DFB Raman Lasers,” in “Nonlinear Optics,” (OSA, 2017), 1, paper NW4A.17.
  21. H. Cao, J. Atai, J. Zuo, Y. Yu, A. Gbadebo, B. Xiong, J. Hou, P. Liang, Y. Gao, and X. Shu, “Simultaneous multichannel carrier-suppressed return-to-zero to non-return-to-zero format conversion using a fiber Bragg grating,” Appl. Opt. 54(20), 6344 (2015).
    [Crossref] [PubMed]
  22. I. Bennion, J. Williams, and L. Zhang, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
    [Crossref]
  23. H. Yin, A. Gbadebo, and E. G. Turitsyna, “Top-hat random fiber Bragg grating,” Opt. Lett. 40(15), 3592 (2015).
    [Crossref] [PubMed]
  24. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P. Y. Fonjallaz, “Fabrication of advanced fiber Bragg gratings by use of sequential writing with a continuous-wave ultraviolet laser source.,” Appl. Opt. 41(6), 1051–1056 (2002).
    [Crossref] [PubMed]
  25. A. Gbadebo, E. Turitsyna, J. Williams, and S. Turitsyn, “Fibre grating filters for suppression of near infrared OH emission lines,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013) 2013, 852–854 (2013).
    [Crossref]
  26. J. Skaar and O. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
    [Crossref]
  27. H. Cao, J. Atai, X. Shu, and G. Chen, “Direct design of high channel-count fiber Bragg grating filters with low index modulation,” Opt. Express 20(11), 12095–12110 (2012).
    [Crossref] [PubMed]
  28. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
    [Crossref]
  29. E. G. Turitsyna, A. Gbadebo, and J. A. R. Williams, “A technique for mitigating the effect of the writing-beam profile on fibre Bragg grating fabrication,” Opt. Express 23(10), 12628–12635 (2015).
    [Crossref] [PubMed]
  30. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Light. Technol. 25(9), 2739–2750 (2007).
    [Crossref]
  31. J. Chen, T. Liu, and H. Jiang, “Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm,” Opt. Commun. 358, 59–64 (2016).
  32. B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
    [Crossref]
  33. P. Swart and A. Chtcherbakov, “Study of hydrogen diffusion in boron/germanium codoped optical fiber,” J. Light. Technol. 20(11), 1933–1941 (2002).
    [Crossref]
  34. G. Brochu, S. LaRochelle, and N. Ayotte, “Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers,” J. Light. Technol. 27(15), 3123–3134 (2009).
    [Crossref]

2016 (2)

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

J. Chen, T. Liu, and H. Jiang, “Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm,” Opt. Commun. 358, 59–64 (2016).

2015 (4)

2013 (1)

A. Gbadebo, E. Turitsyna, J. Williams, and S. Turitsyn, “Fibre grating filters for suppression of near infrared OH emission lines,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013) 2013, 852–854 (2013).
[Crossref]

2012 (1)

2009 (1)

G. Brochu, S. LaRochelle, and N. Ayotte, “Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers,” J. Light. Technol. 27(15), 3123–3134 (2009).
[Crossref]

2008 (1)

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[Crossref]

2007 (1)

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Light. Technol. 25(9), 2739–2750 (2007).
[Crossref]

2004 (2)

J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12(24), 5902–5909 (2004).
[Crossref] [PubMed]

Y. Liu, J. Pan, and C. Gu, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916 (2004).
[Crossref]

2003 (2)

J. Skaar and O. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

2002 (2)

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

1997 (2)

C. L. Liou, L. A. Wang, and M. C. Shih, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A Mater. Sci. Process. 64(2), 191–197 (1997).
[Crossref]

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

1996 (1)

I. Bennion, J. Williams, and L. Zhang, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

1995 (2)

M. J. Cole, T. Widdowson, and A. D. Ellis, “10cm chirped fibre Bragg grating for dispersion compensation at 10Gbit/s over 400 km,” Electron. Lett. 31(25), 2203–2204 (1995).
[Crossref]

M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

1994 (2)

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

1993 (1)

K. Hill, B. Malo, F. Bilodeau, and D. Johnson, “Photosensitivity in optical Fibres,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[Crossref]

1989 (1)

Albert, J.

B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

Aragon-Salamanca, A.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Atai, J.

Ayotte, N.

G. Brochu, S. LaRochelle, and N. Ayotte, “Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers,” J. Light. Technol. 27(15), 3123–3134 (2009).
[Crossref]

Barcelos, S.

M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Beauchesne, G. A.

I. J. F. Brennan, D. LaBrake, G. A. Beauchesne, and R. P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” U. S. PatentUS5912999 (1999).

Beckett, M. G.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Bennion, I.

I. Bennion, J. Williams, and L. Zhang, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Bilodeau, F.

B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

K. Hill, B. Malo, F. Bilodeau, and D. Johnson, “Photosensitivity in optical Fibres,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[Crossref]

Bland-Hawthorn, J.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[Crossref]

J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12(24), 5902–5909 (2004).
[Crossref] [PubMed]

S. Ellis and J. Bland-Hawthorn, “Speciality optical fibers for advanced astronomical instrumentation,” SPIE Newsroom pp. 2–5 (SPIE,2015).

Brennan, I. J. F.

I. J. F. Brennan, D. LaBrake, G. A. Beauchesne, and R. P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” U. S. PatentUS5912999 (1999).

Brinchmann, J.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Brochu, G.

G. Brochu, S. LaRochelle, and N. Ayotte, “Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers,” J. Light. Technol. 27(15), 3123–3134 (2009).
[Crossref]

Brown, D. A.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

Buryak, A.

A. Buryak, K. Kolossovski, and D. Y. Stepanov, “Improved multi channel grating design,” PatentWO2003079083A1 (2003).

Buryak, A. V.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

Cao, H.

Chen, G.

Chen, J.

J. Chen, T. Liu, and H. Jiang, “Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm,” Opt. Commun. 358, 59–64 (2016).

Chtcherbakov, A.

P. Swart and A. Chtcherbakov, “Study of hydrogen diffusion in boron/germanium codoped optical fiber,” J. Light. Technol. 20(11), 1933–1941 (2002).
[Crossref]

Cole, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Cole, M. J.

M. J. Cole, T. Widdowson, and A. D. Ellis, “10cm chirped fibre Bragg grating for dispersion compensation at 10Gbit/s over 400 km,” Electron. Lett. 31(25), 2203–2204 (1995).
[Crossref]

Cortecchia, F.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Dagenais, M.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

Durkin, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Edvell, G.

Ellis, A. D.

M. J. Cole, T. Widdowson, and A. D. Ellis, “10cm chirped fibre Bragg grating for dispersion compensation at 10Gbit/s over 400 km,” Electron. Lett. 31(25), 2203–2204 (1995).
[Crossref]

Ellis, R. S.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Ellis, S.

S. Ellis and J. Bland-Hawthorn, “Speciality optical fibers for advanced astronomical instrumentation,” SPIE Newsroom pp. 2–5 (SPIE,2015).

Ellis, S. C.

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[Crossref]

Englund, M.

Ennico, K. A.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Fonjallaz, P. Y.

Friberg, A. T.

Gao, Y.

Gatkine, P.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

Gbadebo, A.

H. Cao, J. Atai, J. Zuo, Y. Yu, A. Gbadebo, B. Xiong, J. Hou, P. Liang, Y. Gao, and X. Shu, “Simultaneous multichannel carrier-suppressed return-to-zero to non-return-to-zero format conversion using a fiber Bragg grating,” Appl. Opt. 54(20), 6344 (2015).
[Crossref] [PubMed]

H. Yin, A. Gbadebo, and E. G. Turitsyna, “Top-hat random fiber Bragg grating,” Opt. Lett. 40(15), 3592 (2015).
[Crossref] [PubMed]

E. G. Turitsyna, A. Gbadebo, and J. A. R. Williams, “A technique for mitigating the effect of the writing-beam profile on fibre Bragg grating fabrication,” Opt. Express 23(10), 12628–12635 (2015).
[Crossref] [PubMed]

A. Gbadebo, E. Turitsyna, J. Williams, and S. Turitsyn, “Fibre grating filters for suppression of near infrared OH emission lines,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013) 2013, 852–854 (2013).
[Crossref]

A. Gbadebo, E. Turitsyna, and J. Williams, “Experimental Demonstration of Real-time correction of writing errors during Fibre-Bragg grating fabrication,” in “Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP),” vol. 3 (OSA, 2016), paper BTh1B.2.
[Crossref]

Gbadebo, A. A.

A. A. Gbadebo, E. G. Turitsyna, and J. A. R. Williams, “Experimental Comparison of Differing Design Approaches for Multichannel Fibre Bragg Gratings,” The European Conference on Lasers and Electro-Optics 854, 12110 (2015).

Glazebrook, K.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Glenn, W. H.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[Crossref] [PubMed]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” in “OE/FIBERS ’89,”R. P. DePaula and E. Udd, eds. (International Society for Optics and Photonics, 1990), pp. 98–107.

Gu, C.

Y. Liu, J. Pan, and C. Gu, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916 (2004).
[Crossref]

Helmfrid, S.

Hill, K.

B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

K. Hill, B. Malo, F. Bilodeau, and D. Johnson, “Photosensitivity in optical Fibres,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[Crossref]

Hou, J.

Hu, Y.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

Ibsen, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Jiang, H.

J. Chen, T. Liu, and H. Jiang, “Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm,” Opt. Commun. 358, 59–64 (2016).

Johnson, D.

B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

K. Hill, B. Malo, F. Bilodeau, and D. Johnson, “Photosensitivity in optical Fibres,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[Crossref]

Kashyap, R.

S. Loranger and R. Kashyap, “Fiber Imperfections and their Impact on the Performance of Fiber Grating DFB Raman Lasers,” in “Nonlinear Optics,” (OSA, 2017), 1, paper NW4A.17.

Kenworthy, M. A.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Kolossovski, K.

A. Buryak, K. Kolossovski, and D. Y. Stepanov, “Improved multi channel grating design,” PatentWO2003079083A1 (2003).

Kolossovski, K. Y.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

LaBrake, D.

I. J. F. Brennan, D. LaBrake, G. A. Beauchesne, and R. P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” U. S. PatentUS5912999 (1999).

Laming, R.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Laming, R. I.

M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

LaRochelle, S.

G. Brochu, S. LaRochelle, and N. Ayotte, “Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers,” J. Light. Technol. 27(15), 3123–3134 (2009).
[Crossref]

Li, H.

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Light. Technol. 25(9), 2739–2750 (2007).
[Crossref]

Li, M.

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Light. Technol. 25(9), 2739–2750 (2007).
[Crossref]

Liang, P.

Liou, C. L.

C. L. Liou, L. A. Wang, and M. C. Shih, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A Mater. Sci. Process. 64(2), 191–197 (1997).
[Crossref]

Liu, T.

J. Chen, T. Liu, and H. Jiang, “Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm,” Opt. Commun. 358, 59–64 (2016).

Liu, Y.

Y. Liu, J. Pan, and C. Gu, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916 (2004).
[Crossref]

Loh, W. H.

M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Loranger, S.

S. Loranger and R. Kashyap, “Fiber Imperfections and their Impact on the Performance of Fiber Grating DFB Raman Lasers,” in “Nonlinear Optics,” (OSA, 2017), 1, paper NW4A.17.

Mackay, C. D.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Malo, B.

B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

K. Hill, B. Malo, F. Bilodeau, and D. Johnson, “Photosensitivity in optical Fibres,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[Crossref]

McMahon, R. G.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Medlen, S. R.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Meltz, G.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[Crossref] [PubMed]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” in “OE/FIBERS ’89,”R. P. DePaula and E. Udd, eds. (International Society for Optics and Photonics, 1990), pp. 98–107.

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[Crossref] [PubMed]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” in “OE/FIBERS ’89,”R. P. DePaula and E. Udd, eds. (International Society for Optics and Photonics, 1990), pp. 98–107.

Morse, T. F.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

Pan, J.

Y. Liu, J. Pan, and C. Gu, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916 (2004).
[Crossref]

Parry, I. R.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Pepin, R. P.

I. J. F. Brennan, D. LaBrake, G. A. Beauchesne, and R. P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” U. S. PatentUS5912999 (1999).

Petermann, I.

Piche, F.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Pritchar, J. M.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Pritchard, J. M.

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

Reinhart, L.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

Rothenberg, J. E.

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Light. Technol. 25(9), 2739–2750 (2007).
[Crossref]

Sahlgren, B.

Sheng, Y.

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Light. Technol. 25(9), 2739–2750 (2007).
[Crossref]

Shih, M. C.

C. L. Liou, L. A. Wang, and M. C. Shih, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A Mater. Sci. Process. 64(2), 191–197 (1997).
[Crossref]

Shu, X.

Skaar, J.

J. Skaar and O. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Stepanov, D. Y.

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

A. Buryak, K. Kolossovski, and D. Y. Stepanov, “Improved multi channel grating design,” PatentWO2003079083A1 (2003).

Swart, P.

P. Swart and A. Chtcherbakov, “Study of hydrogen diffusion in boron/germanium codoped optical fiber,” J. Light. Technol. 20(11), 1933–1941 (2002).
[Crossref]

Turitsyn, S.

A. Gbadebo, E. Turitsyna, J. Williams, and S. Turitsyn, “Fibre grating filters for suppression of near infrared OH emission lines,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013) 2013, 852–854 (2013).
[Crossref]

Turitsyna, E.

A. Gbadebo, E. Turitsyna, J. Williams, and S. Turitsyn, “Fibre grating filters for suppression of near infrared OH emission lines,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013) 2013, 852–854 (2013).
[Crossref]

A. Gbadebo, E. Turitsyna, and J. Williams, “Experimental Demonstration of Real-time correction of writing errors during Fibre-Bragg grating fabrication,” in “Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP),” vol. 3 (OSA, 2016), paper BTh1B.2.
[Crossref]

Turitsyna, E. G.

Veilleux, S.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

Waagaard, O.

J. Skaar and O. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

Wang, J. Q.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Wang, L. A.

C. L. Liou, L. A. Wang, and M. C. Shih, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A Mater. Sci. Process. 64(2), 191–197 (1997).
[Crossref]

Widdowson, T.

M. J. Cole, T. Widdowson, and A. D. Ellis, “10cm chirped fibre Bragg grating for dispersion compensation at 10Gbit/s over 400 km,” Electron. Lett. 31(25), 2203–2204 (1995).
[Crossref]

Williams, J.

A. Gbadebo, E. Turitsyna, J. Williams, and S. Turitsyn, “Fibre grating filters for suppression of near infrared OH emission lines,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013) 2013, 852–854 (2013).
[Crossref]

I. Bennion, J. Williams, and L. Zhang, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

A. Gbadebo, E. Turitsyna, and J. Williams, “Experimental Demonstration of Real-time correction of writing errors during Fibre-Bragg grating fabrication,” in “Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP),” vol. 3 (OSA, 2016), paper BTh1B.2.
[Crossref]

Williams, J. A. R.

A. A. Gbadebo, E. G. Turitsyna, and J. A. R. Williams, “Experimental Comparison of Differing Design Approaches for Multichannel Fibre Bragg Gratings,” The European Conference on Lasers and Electro-Optics 854, 12110 (2015).

E. G. Turitsyna, A. Gbadebo, and J. A. R. Williams, “A technique for mitigating the effect of the writing-beam profile on fibre Bragg grating fabrication,” Opt. Express 23(10), 12628–12635 (2015).
[Crossref] [PubMed]

Xiao, G.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

Xiong, B.

Yin, H.

Yu, Y.

Zervas, M. N.

M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

Zhang, L.

I. Bennion, J. Williams, and L. Zhang, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

Zhang, Q.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

Zhu, T.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

Zuo, J.

39th European Conference and Exhibition on Optical Communication (ECOC 2013) (1)

A. Gbadebo, E. Turitsyna, J. Williams, and S. Turitsyn, “Fibre grating filters for suppression of near infrared OH emission lines,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013) 2013, 852–854 (2013).
[Crossref]

Annu. Rev. Mater. Sci. (1)

K. Hill, B. Malo, F. Bilodeau, and D. Johnson, “Photosensitivity in optical Fibres,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A Mater. Sci. Process. (1)

C. L. Liou, L. A. Wang, and M. C. Shih, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A Mater. Sci. Process. 64(2), 191–197 (1997).
[Crossref]

Appl. Phys. Lett. (1)

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108(10), 101104 (2016).
[Crossref]

Electron. Lett. (4)

M. J. Cole, T. Widdowson, and A. D. Ellis, “10cm chirped fibre Bragg grating for dispersion compensation at 10Gbit/s over 400 km,” Electron. Lett. 31(25), 2203–2204 (1995).
[Crossref]

M. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase maskscanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31(17), 1488–1490 (1995).
[Crossref]

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

B. Malo, J. Albert, K. Hill, F. Bilodeau, and D. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

IEEE J. Quantum Electron. (3)

J. Skaar and O. Waagaard, “Design and characterization of finite-length fiber gratings,” IEEE J. Quantum Electron. 39(10), 1238–1245 (2003).
[Crossref]

A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, “Optimization of refractive index sampling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39(1), 91–98 (2003).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and G. Xiao, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photonics Technol. Lett. 6(7), 839–841 (1994).
[Crossref]

J. Light. Technol. (3)

H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Light. Technol. 25(9), 2739–2750 (2007).
[Crossref]

P. Swart and A. Chtcherbakov, “Study of hydrogen diffusion in boron/germanium codoped optical fiber,” J. Light. Technol. 20(11), 1933–1941 (2002).
[Crossref]

G. Brochu, S. LaRochelle, and N. Ayotte, “Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers,” J. Light. Technol. 27(15), 3123–3134 (2009).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[Crossref]

Opt. Commun. (1)

J. Chen, T. Liu, and H. Jiang, “Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm,” Opt. Commun. 358, 59–64 (2016).

Opt. Eng. (1)

Y. Liu, J. Pan, and C. Gu, “Novel fiber Bragg grating fabrication method with high-precision phase control,” Opt. Eng. 43(8), 1916 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

I. Bennion, J. Williams, and L. Zhang, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28(2), 93–135 (1996).
[Crossref]

The European Conference on Lasers and Electro-Optics (1)

A. A. Gbadebo, E. G. Turitsyna, and J. A. R. Williams, “Experimental Comparison of Differing Design Approaches for Multichannel Fibre Bragg Gratings,” The European Conference on Lasers and Electro-Optics 854, 12110 (2015).

Other (7)

A. Gbadebo, E. Turitsyna, and J. Williams, “Experimental Demonstration of Real-time correction of writing errors during Fibre-Bragg grating fabrication,” in “Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP),” vol. 3 (OSA, 2016), paper BTh1B.2.
[Crossref]

S. Loranger and R. Kashyap, “Fiber Imperfections and their Impact on the Performance of Fiber Grating DFB Raman Lasers,” in “Nonlinear Optics,” (OSA, 2017), 1, paper NW4A.17.

S. Ellis and J. Bland-Hawthorn, “Speciality optical fibers for advanced astronomical instrumentation,” SPIE Newsroom pp. 2–5 (SPIE,2015).

K. A. Ennico, I. R. Parry, M. A. Kenworthy, R. S. Ellis, C. D. Mackay, M. G. Beckett, K. Glazebrook, J. Brinchmann, J. M. Pritchar, A. Aragon-Salamanca, K. Glazebrook, J. Brinchmann, J. M. Pritchard, S. R. Medlen, F. Piche, R. G. McMahon, and F. Cortecchia, “The Cambridge OH Suppression Instrument (COHSI): Status After First Commissioning Run,” in “Astronomical Telescopes & Instrumentation,” vol. 3354A. M. Fowler, ed. (SPIE, 1998), pp. 668–674.
[Crossref]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” in “OE/FIBERS ’89,”R. P. DePaula and E. Udd, eds. (International Society for Optics and Photonics, 1990), pp. 98–107.

A. Buryak, K. Kolossovski, and D. Y. Stepanov, “Improved multi channel grating design,” PatentWO2003079083A1 (2003).

I. J. F. Brennan, D. LaBrake, G. A. Beauchesne, and R. P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” U. S. PatentUS5912999 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Designed aperiodic multichannel grating (a) Amplitude of coupling coefficient (CC) (grating D1) (b) Comparison of the target spectrum (blue line) and fabricated (red line) reflection spectrum (C) Amplitude of spread coupling coefficient (CC)(grating D2), (d) target spectrum (blue line) and fabricated (red line) multichannel grating
Fig. 2
Fig. 2 (a) Schema of gratings positioned next to each other in the fibre (b) simulated(blue line) and fabricated (red line) reflection spectrum of two channels next to each other in the fibre (c) Deviation from expected inter-channel spaces, δλ, for gratings written at different times
Fig. 3
Fig. 3 Designed and fabricated 5-channel gratings (a) Amplitude of coupling coefficient (CC) (D3) (b) Comparison of the designed (blue line) and fabricated (red line) reflection spectrum for D3 (c) Amplitude of coupling coefficient (CC) (D4) (d) Comparison of the designed (blue line) and fabricated (red line) reflection spectrum for D4
Fig. 4
Fig. 4 The root mean square deviation (RMSD) of wavelength (blue triangle) and strength (red dots) of fabricated channels from expected for each design

Tables (2)

Tables Icon

Table 1 5 OH emission line wavelengths and strengths to be suppressed

Tables Icon

Table 2 Group delay parameter for each channel in each grating design

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| r ( λ ) | = R j j = 1 N exp ( ( λ λ j b ) 4 ) × exp ( i 2 π n eff ( 1 λ 1 λ j ) d j )
| q | max V = tanh 1 ( R max ) L

Metrics