Abstract

We propose a novel broadband absorber that shows a strong absorption band much broader than that shown in previous work. In our proposed absorber, randomly arranged metal nanobumps are introduced in the incident-side metal layer of a metal/insulator / metal structure. The random structure converts broadband light into surface plasmons without any angular or polarization dependence. Using silver as the metal layer, we obtained an ultrawide region in which the absorption was higher than 50% in the wavelength region from 0.4 to 3.2 μm, which corresponds to a three-octave bandwidth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity

Amir Ghobadi, Hodjat Hajian, Murat Gokbayrak, Sina Abedini Dereshgi, Ahmet Toprak, Bayram Butun, and Ekmel Ozbay
Opt. Express 25(22) 27624-27634 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
    [Crossref] [PubMed]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  3. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  4. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  5. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [Crossref] [PubMed]
  6. C. Wu, B. Neuner, and G. Shvets, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  7. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49(51), 9838–9852 (2010).
    [Crossref]
  8. R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
    [Crossref] [PubMed]
  9. K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
    [Crossref]
  10. C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
    [Crossref] [PubMed]
  11. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(104), A620–A630 (2010).
    [Crossref] [PubMed]
  12. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
    [Crossref] [PubMed]
  13. L. Zhu, A. Raman, X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
    [Crossref]
  14. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref] [PubMed]
  15. C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  16. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
    [Crossref]
  17. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
    [Crossref]
  18. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
    [Crossref]
  19. X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
    [Crossref] [PubMed]
  20. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Commun. 2, 517 (2011).
    [Crossref]
  21. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  22. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [Crossref] [PubMed]
  23. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref] [PubMed]
  24. D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
    [Crossref]
  25. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  26. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  27. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [Crossref] [PubMed]
  28. H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
    [Crossref] [PubMed]
  29. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
    [Crossref]
  30. D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
    [Crossref] [PubMed]
  31. M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” NANO Lett. 13(9), 4428–4433 (2013).
    [Crossref] [PubMed]

2017 (1)

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

2016 (2)

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

2014 (5)

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

2013 (3)

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” NANO Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

2012 (4)

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

2011 (5)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Commun. 2, 517 (2011).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

C. Wu, B. Neuner, and G. Shvets, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

2010 (4)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(104), A620–A630 (2010).
[Crossref] [PubMed]

2009 (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

2007 (1)

2004 (1)

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Abbas, M. N.

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Anoma, M. A.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Commun. 2, 517 (2011).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Commun. 2, 517 (2011).
[Crossref]

Bagheri, S.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” NANO Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Bai, W.

Bartoli, F.

Bessho, N.

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

Beyer, A.

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

Bouchon, P.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Commun. 2, 517 (2011).
[Crossref]

Cadusch, J. J.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

Cai, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Cai, W.

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[Crossref] [PubMed]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Chang, Y.-C.

Chen, J.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Chen, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(104), A620–A630 (2010).
[Crossref] [PubMed]

Chen, X.

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[Crossref] [PubMed]

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Cheng, C.-W.

Chettiar, U. K.

Chilkoti, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Chiu, C.-W.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Crispin, X.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Dai, S.

Davis, T. J.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

de Silva, V. C.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Dligatch, S.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

Drachev, V. P.

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fan, S.

L. Zhu, A. Raman, X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Fang, N. X.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Commun. 2, 517 (2011).
[Crossref]

Fung, K. H.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Gan, Q.

Giessen, H.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” NANO Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

Gölzhäuser, A.

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

Gómez, D. E.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

Gong, H.

Gu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Gu, M.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Guo, L. J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Haïdar, R.

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

He, S.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” NANO Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hill, R. T.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Huang, S.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Huang, W.-Q.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

Hucknall, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Ishibashi, K.

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

Ishii, A.

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Jia, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jokerst, N. M.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Jonsson, M. P.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Kafafi, Z.

Käll, M.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
[Crossref]

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Kildishev, A. V.

Koechlin, C.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Kumar, A.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lai, K.-T.

Li, C.

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

Li, Q.

Li, X.-F.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

Li, Y.

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

Liu, D.

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

Liu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

Liu, X.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Z.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Micheletto, R.

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

Mock, J. J.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Mulvaney, P.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

Neuner, B.

C. Wu, B. Neuner, and G. Shvets, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Ng, C.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

Nishino, T.

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

Okamoto, T.

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Pan, P.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Pardo, F.

Pelouard, J.-L.

Prikulis, J.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
[Crossref]

Qiao, Q.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Qiu, M.

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Raman, A.

L. Zhu, A. Raman, X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Rephaeli, E.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Roberts, A.

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

Saha, J. K.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

Shi, Z.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Shih, M.-H.

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, and G. Shvets, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Smith, D. R.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Song, G.

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Stokes, N.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
[Crossref]

Takatori, K.

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

Takei, H.

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Tordera, D.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Vieker, H.

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

Volkov, A. V.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Wang, B.-X.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

Wang, G.-Z.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.-L.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

Wang, X.

Wang, Y.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

Weiss, T.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” NANO Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wolter, S. D.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Neuner, and G. Shvets, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Xu, J.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Yang, Y.

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Yuan, H.-K.

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Zhai, X.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

Zhang, H.

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

Zhang, T.

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

Zhao, D.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[Crossref] [PubMed]

Zhou, F.

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhu, L.

ACS Appl. Mater. Interfaces (1)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

ACS Nano (2)

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano 6(10), 9237–9246 (2012).
[Crossref] [PubMed]

C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gómez, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano 10(4), 4704–4711 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Adv. Mater. (1)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (2)

D. Liu, F. Zhou, C. Li, T. Zhang, H. Zhang, W. Cai, and Y. Li, “Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system,” Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015).
[Crossref]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49(51), 9838–9852 (2010).
[Crossref]

Appl. Phys. A (1)

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys. A 115(4), 1187–1192 (2014).
[Crossref]

Appl. Phys. Lett. (2)

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

J. Phys. D : Appl. Phys. (1)

K. Takatori, T. Nishino, T. Okamoto, H. Takei, K. Ishibashi, and R. Micheletto, “Indium-free organic thin-film solar cells using a plasmonic electrode,” J. Phys. D : Appl. Phys. 49(18), 185106 (2016).
[Crossref]

Langmuir (1)

H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, and A. Gölzhäuser, “Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film,” Langmuir 30(8), 2297–2305 (2014).
[Crossref] [PubMed]

NANO Lett. (3)

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” NANO Lett. 4(6), 1003–1007 (2004).
[Crossref]

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic semitransparent nanohole electrodes,” NANO Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” NANO Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nature Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Commun. 2, 517 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

C. Wu, B. Neuner, and G. Shvets, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the bumpy MIM. (b) SEM image of a bumpy MIM before depositing both a PMMA layer and a thick metal layer. (c) Cross-sectional SEM image of a bumpy MIM consisting of a 12 nm-thick thin gold layer supported on 50 nm-diameter particles and a 125 nm-thick PMMA layer.
Fig. 2
Fig. 2 (a) Measured absorption spectra of bumpy MIMs consisting of gold layer (120 nm) / PMMA layer (84, 125, or 147 nm) / gold layer (12 nm) / silica particles (50 nm in diameter) / glass substrate. (b) Measured absorption spectra of the bumpy MIMs for particle coverages of 12%, 28%, and 41%. (c) Measured absorption spectra of the bumpy MIMs for thin gold layers with thicknesses of 6, 12, and 25 nm. (d) Measured absorption spectra of silver, aluminum, and gold bumpy MIMs. Solid curves and dashed curves correspond to the absorption measured with the UV-visible-NIR spectrophotometer and the extinction measured with the FT/IR spectrometer, respectively.
Fig. 3
Fig. 3 (a) Typical calculation model of a bumpy MIM. The covering angle of the metal layer on the particles is denoted by θ. (b) Calculated absorption spectra of gold bumpy MIMs with a particle coverage of 41% for θ = 40°, 50°, and 60°. An experimentally obtained spectrum is also shown.
Fig. 4
Fig. 4 Measured extinction spectra of a gold bumpy MIM as a function of the angle of incidence and wavelength for (a) TM-polarized, (b) TE-polarized, and (c) non-polarized light.
Fig. 5
Fig. 5 Extinction spectra of the gold bumpy MIM with (solid curves) and without (dashed curves) compensation for the surface reflection at the substrate surface for 8°, 30°, and 60° incidence for (a) TM-polarized and (b) TE-polarized light.
Fig. 6
Fig. 6 Absorption cross-section spectra of bumpy MIMs with 1–3 particles for x-polarization (solid lines) and y-polarization (dashed lines).
Fig. 7
Fig. 7 Calculated electromagnetic field distribution of a bumpy MIM with 3 particles, (a) Ex and (b) Hy at 1.48 μm and (c) Hx at 1.26 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E = 1 1 E total 1 E glass ,
( λ ) = ( a + b λ 2 + c λ 4 ) 2 ,
E = E exp 1 R glass ,
( ω ) = ω p 2 ω 2 + i γ ω ,

Metrics