Abstract

The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal response of Bragg gratings in PMMA microstructured optical fibers

Karen E Carroll, Chi Zhang, David J. Webb, Kyriacos Kalli, Alexander Argyros, and Maryanne C. J. Large
Opt. Express 15(14) 8844-8850 (2007)

Polymer optical fiber Bragg grating inscription with a single UV laser pulse

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André
Opt. Express 25(8) 9028-9038 (2017)

Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

Getinet Woyessa, Kristian Nielsen, Alessio Stefani, Christos Markos, and Ole Bang
Opt. Express 24(2) 1206-1213 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26 (9), 092004 (2015).
    [Crossref]
  2. M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20 (3), 034014 (2009).
    [Crossref]
  3. C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
    [Crossref]
  4. T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
    [Crossref]
  5. C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
    [Crossref]
  6. W. Zhang, D. J. Webb, and G. D. Peng, “Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Lightwave Technol. 30 (8), 1090–1096 (2012).
    [Crossref]
  7. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  8. I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fiber,” Proc. SPIE 7753, 77536T (2011).
    [Crossref]
  9. D. Bosc and C. Toinen, “Tensile mechanical-properties and reduced internal stresses of polymer optical-fiber,” Polym. Compos. 14(5), 410–413 (1993).
    [Crossref]
  10. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  11. J.J. Tribone, J.M. O’Reilly, and J. Greener, “Analysis of enthalpy relaxation in poly (methyl methacrylate): effects of tacticity, deuteration, and thermal history,” Macromolecules 19(6), 1732–1739 (1986).
    [Crossref]
  12. P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
    [Crossref]
  13. A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
    [Crossref]
  14. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
    [Crossref] [PubMed]
  15. A. Abang and D. J. Webb, “Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors,” Meas. Sci. Technol. 25(1), 015102 (2014).
    [Crossref]
  16. X. Hu, D. Kinet, P. Mégret, and C. Caucheteur, “Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers,” Opt. Lett. 41(13), 2930–2933 (2016).
    [Crossref] [PubMed]
  17. D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
    [Crossref] [PubMed]
  18. A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
    [Crossref] [PubMed]
  19. K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
    [Crossref]
  20. K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
    [Crossref]
  21. W. Zhang, D. J. Webb, and G. D. Peng, “Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors,” Opt. Lett. 40(17), 4046–4049 (2015).
    [Crossref] [PubMed]
  22. M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mat. 9(1-4), 192–200 (1998).
    [Crossref]

2017 (2)

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

2016 (5)

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

X. Hu, D. Kinet, P. Mégret, and C. Caucheteur, “Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers,” Opt. Lett. 41(13), 2930–2933 (2016).
[Crossref] [PubMed]

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

2015 (2)

2014 (1)

A. Abang and D. J. Webb, “Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors,” Meas. Sci. Technol. 25(1), 015102 (2014).
[Crossref]

2013 (1)

2012 (2)

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Lightwave Technol. 30 (8), 1090–1096 (2012).
[Crossref]

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

2011 (1)

I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fiber,” Proc. SPIE 7753, 77536T (2011).
[Crossref]

2009 (1)

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20 (3), 034014 (2009).
[Crossref]

2007 (1)

2001 (1)

K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
[Crossref]

1998 (1)

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mat. 9(1-4), 192–200 (1998).
[Crossref]

1994 (1)

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

1993 (2)

D. Bosc and C. Toinen, “Tensile mechanical-properties and reduced internal stresses of polymer optical-fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

1986 (1)

J.J. Tribone, J.M. O’Reilly, and J. Greener, “Analysis of enthalpy relaxation in poly (methyl methacrylate): effects of tacticity, deuteration, and thermal history,” Macromolecules 19(6), 1732–1739 (1986).
[Crossref]

Abang, A.

A. Abang and D. J. Webb, “Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors,” Meas. Sci. Technol. 25(1), 015102 (2014).
[Crossref]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

André, P.

Argyros, A.

Bang, O.

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

Beckham, H. W.

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Boeffel, C.

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

Bosc, D.

D. Bosc and C. Toinen, “Tensile mechanical-properties and reduced internal stresses of polymer optical-fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

Broadway, C.

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Carpintero, G.

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Carroll, K. E.

Caucheteur, C.

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Diemeer, M. B. J.

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mat. 9(1-4), 192–200 (1998).
[Crossref]

Fukao, K.

K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
[Crossref]

Gallego, D.

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Greener, J.

J.J. Tribone, J.M. O’Reilly, and J. Greener, “Analysis of enthalpy relaxation in poly (methyl methacrylate): effects of tacticity, deuteration, and thermal history,” Macromolecules 19(6), 1732–1739 (1986).
[Crossref]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Hoshino, A.

K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
[Crossref]

Hu, X.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Johnson, I. P.

I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fiber,” Proc. SPIE 7753, 77536T (2011).
[Crossref]

Kalli, K.

I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fiber,” Proc. SPIE 7753, 77536T (2011).
[Crossref]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[Crossref] [PubMed]

Kinet, D.

Krebber, K.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Kulik, A. S.

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

Lamela-Rivera, H.

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Large, M. C.

Large, M. C. J.

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20 (3), 034014 (2009).
[Crossref]

Luo, Y. H.

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Markos, C.

Marques, C. A. F.

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

Mégret, P.

Mergo, P.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Miyaji, H.

K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
[Crossref]

Miyamoto, Y.

K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
[Crossref]

Moran, J. H.

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20 (3), 034014 (2009).
[Crossref]

Nielsen, K.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

O’Reilly, J.M.

J.J. Tribone, J.M. O’Reilly, and J. Greener, “Analysis of enthalpy relaxation in poly (methyl methacrylate): effects of tacticity, deuteration, and thermal history,” Macromolecules 19(6), 1732–1739 (1986).
[Crossref]

Ohlemacher, A.

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

Pawelzik, U.

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

Peng, G. D.

Pospori, A.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Rasmussen, H.K.

Sáez-Rodríguez, D.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

Schmidt-Rohr, K.

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Spiess, H. W.

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

Stajanca, P.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Stefani, A.

Sugden, K.

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Toinen, C.

D. Bosc and C. Toinen, “Tensile mechanical-properties and reduced internal stresses of polymer optical-fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

Tribone, J.J.

J.J. Tribone, J.M. O’Reilly, and J. Greener, “Analysis of enthalpy relaxation in poly (methyl methacrylate): effects of tacticity, deuteration, and thermal history,” Macromolecules 19(6), 1732–1739 (1986).
[Crossref]

Uno, S.

K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
[Crossref]

Wang, T. X.

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

Webb, D. J.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26 (9), 092004 (2015).
[Crossref]

W. Zhang, D. J. Webb, and G. D. Peng, “Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors,” Opt. Lett. 40(17), 4046–4049 (2015).
[Crossref] [PubMed]

A. Abang and D. J. Webb, “Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors,” Meas. Sci. Technol. 25(1), 015102 (2014).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H.K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Lightwave Technol. 30 (8), 1090–1096 (2012).
[Crossref]

I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fiber,” Proc. SPIE 7753, 77536T (2011).
[Crossref]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[Crossref] [PubMed]

Webb, D.J.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

Woyessa, G.

Ye, L.

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20 (3), 034014 (2009).
[Crossref]

Zhang, C.

Zhang, Q. J.

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

Zhang, W.

Zubel, M.

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

IEEE Sens. J. (1)

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16 (15), 6122–6129 (2016).
[Crossref]

J. Lightwave Technol. (1)

Macromolecules (2)

K. Schmidt-Rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik, C. Boeffel, and H. W. Spiess, “Molecular nature of the beta-relaxation in poly(methyl methacrylate) investigated by multidimensional NMR,” Macromolecules 27(17), 4733–4745 (1994).
[Crossref]

J.J. Tribone, J.M. O’Reilly, and J. Greener, “Analysis of enthalpy relaxation in poly (methyl methacrylate): effects of tacticity, deuteration, and thermal history,” Macromolecules 19(6), 1732–1739 (1986).
[Crossref]

Meas. Sci. Technol. (3)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26 (9), 092004 (2015).
[Crossref]

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20 (3), 034014 (2009).
[Crossref]

A. Abang and D. J. Webb, “Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors,” Meas. Sci. Technol. 25(1), 015102 (2014).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (2)

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D.J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol. 28, 11–17 (2016).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36(7), 68–74 (2017).
[Crossref]

Opt. Lett. (3)

Opt. Mat. (1)

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mat. 9(1-4), 192–200 (1998).
[Crossref]

Phys. Rev. E (1)

K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, “Dynamics of α and β processes in thin polymer films: Poly(vinyl acetate) and poly(methyl methacrylate),” Phys. Rev. E 64(5), 051807 (2001).
[Crossref]

Polym. Compos. (1)

D. Bosc and C. Toinen, “Tensile mechanical-properties and reduced internal stresses of polymer optical-fiber,” Polym. Compos. 14(5), 410–413 (1993).
[Crossref]

Proc. SPIE (3)

I. P. Johnson, D. J. Webb, and K. Kalli, “Utilisation of thermal annealing to record multiplexed FBG sensors in multimode microstructured polymer optical fiber,” Proc. SPIE 7753, 77536T (2011).
[Crossref]

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela-Rivera, “Microstructured polymer optical fiber sensors for opto-acoustic endoscopy,” Proc. SPIE 9886, 98860S (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Setup of POFBGs fabrication.

Fig. 2
Fig. 2

Reflection spectrum of POFBG before and after the annealing process obtained by (a) group 1 and (b) group 2.

Fig. 3
Fig. 3

Strain response of POFBG after the annealing process as obtained from group 2.

Fig. 4
Fig. 4

Experimental setup to strain and anneal the POFBG.

Fig. 5
Fig. 5

Bragg wavelength shift during annealing with 1% strain as obtained from (a) group 1 and (b) group 2.

Fig. 6
Fig. 6

Reflection spectrum before and after annealing with 1% strain as obtained from (a) group 1 and (b) group 2.

Fig. 7
Fig. 7

Bragg wavelength shift during annealing with 2% strain as obtained from (a) group 1 and (b) group 2.

Fig. 8
Fig. 8

Reflection spectrum before and after annealing with 2% strain as obtained from (a) group 1 and (b) group 2.

Fig. 9
Fig. 9

Bragg wavelength shift before and after annealing with 1% and 2% strain.

Fig. 10
Fig. 10

Reflection spectrum of 5 POFBGs multiplexed along the fiber length.

Fig. 11
Fig. 11

Experimental setup to stress and anneal the POFBG.

Fig. 12
Fig. 12

Bragg wavelength shift during annealing with constant stress of (a) 5.8 ± 0.9 MPa and (b) 13.4 ± 2.1 MPa.

Fig. 13
Fig. 13

Reflection spectra before and after annealing with constant stress of (a) 5.8 ± 0.9 MPa and (b) 13.4 ± 2.1 MPa.

Tables (1)

Tables Icon

Table 1 Bragg wavelength at each stage for both experiments.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B = λ B 0 ( α + ξ n e f f ) Δ T .
σ = F A = m g π ( d 2 ) 2 ,