Abstract

A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations

Xinke Wang, Jing Shi, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, and Yan Zhang
Opt. Express 24(7) 7178-7190 (2016)

Nonparaxial propagation of vector vortex beams diffracted by a circular aperture

Xianghan Cui, Chaolin Wang, and Xinting Jia
J. Opt. Soc. Am. A 36(1) 115-123 (2019)

Deformations of circularly polarized Bessel vortex beam reflected and transmitted by a uniaxial anisotropic slab

Haiying Li, Jiawei Liu, Lu Bai, and Zhensen Wu
Appl. Opt. 57(25) 7353-7362 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. A. S. Skryl, J. B. Jackson, M. I. Bakunov, M. Menu, and G. A. Mourou, “Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting,” Appl. Opt. 53(6), 1033–1038 (2014).
    [Crossref] [PubMed]
  3. Y. B. Ji, C. H. Park, H. Kim, S. H. Kim, G. M. Lee, S. K. Noh, T. I. Jeon, J. H. Son, Y. M. Huh, S. Haam, S. J. Oh, S. K. Lee, and J. S. Suh, “Feasibility of terahertz reflectometry for discrimination of human early gastric cancers,” Biomed. Opt. Express 6(4), 1398–1406 (2015).
    [Crossref] [PubMed]
  4. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [Crossref]
  5. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  6. E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
    [Crossref] [PubMed]
  7. J. He, S. Wang, Z. Xie, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “Abruptly autofocusing terahertz waves with meta-hologram,” Opt. Lett. 41(12), 2787–2790 (2016).
    [Crossref] [PubMed]
  8. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref] [PubMed]
  9. M. U. Shaukat, P. Dean, S. P. Khanna, M. Lachab, S. Chakraborty, E. H. Linfield, and A. G. Davies, “Generation of Bessel beams using a terahertz quantum cascade laser,” Opt. Lett. 34(7), 1030–1032 (2009).
    [Crossref] [PubMed]
  10. A. Bitman, I. Moshe, and Z. Zalevsky, “Improving depth-of field in broadband THz beams using nondiffractive Bessel beams,” Opt. Lett. 37(19), 4164–4166 (2012).
    [Crossref] [PubMed]
  11. Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
    [Crossref]
  12. C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
    [Crossref]
  13. M. Cheng, L. Guo, J. Li, and Q. Huang, “Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence,” J. Opt. Soc. Am. A 33(8), 1442–1450 (2016).
    [Crossref] [PubMed]
  14. M. Yang, Y. Wu, K. F. Ren, and X. Sheng, “Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beams using MLFMA,” Opt. Express 24(24), 27979–27992 (2016).
    [Crossref] [PubMed]
  15. A. Aleksanyan and E. Brasselet, “Spin–orbit photonic interaction engineering of Bessel beams,” Optica 3(2), 167–174 (2016).
    [Crossref]
  16. G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
    [Crossref]
  17. J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21(17), 20230–20239 (2013).
    [Crossref] [PubMed]
  18. R. Imai, N. Kanda, T. Higuchi, K. Konishi, and M. Kuwata-Gonokami, “Generation of broadband terahertz vortex beams,” Opt. Lett. 39(13), 3714–3717 (2014).
    [Crossref] [PubMed]
  19. X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54(36), 10641–10649 (2015).
    [Crossref] [PubMed]
  20. B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
    [Crossref] [PubMed]
  21. Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
    [Crossref]
  22. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
    [Crossref]
  23. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
    [Crossref] [PubMed]
  24. Z. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. 39(17), 2982–2987 (2000).
    [Crossref] [PubMed]
  25. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
    [Crossref] [PubMed]
  26. S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
    [Crossref]
  27. A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
    [Crossref] [PubMed]
  28. J. Zheng, Y. Yang, M. Lei, B. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51(30), 7236–7245 (2012).
    [Crossref] [PubMed]
  29. C. W. Zheng, Y. J. Zhang, and D. M. Zhao, “Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Gaussian beam,” Optik (Stuttg.) 117(3), 118–122 (2006).
    [Crossref]
  30. S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
    [Crossref]
  31. X. Wang, J. Shi, W. Sun, S. Feng, P. Han, J. Ye, and Y. Zhang, “Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations,” Opt. Express 24(7), 7178–7190 (2016).
    [Crossref] [PubMed]
  32. X. Wang, S. Wang, Z. Xie, W. Sun, S. Feng, Y. Cui, J. Ye, and Y. Zhang, “Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization,” Opt. Express 22(20), 24622–24634 (2014).
    [Crossref] [PubMed]
  33. O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16(17), 12688–12700 (2008).
    [Crossref] [PubMed]
  34. S. Feng and H. G. Winful, “Physical origin of the Gouy phase shift,” Opt. Lett. 26(8), 485–487 (2001).
    [Crossref] [PubMed]
  35. P. Martelli, M. Tacca, A. Gatto, G. Moneta, and M. Martinelli, “Gouy phase shift in nondiffracting Bessel beams,” Opt. Express 18(7), 7108–7120 (2010).
    [Crossref] [PubMed]
  36. Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
    [Crossref] [PubMed]
  37. Y. Zhang, L. Wang, and C. Zheng, “Vector propagation of radially polarized Gaussian beams diffracted by an axicon,” J. Opt. Soc. Am. A 22(11), 2542–2546 (2005).
    [Crossref] [PubMed]

2017 (1)

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

2016 (6)

2015 (6)

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Y. B. Ji, C. H. Park, H. Kim, S. H. Kim, G. M. Lee, S. K. Noh, T. I. Jeon, J. H. Son, Y. M. Huh, S. Haam, S. J. Oh, S. K. Lee, and J. S. Suh, “Feasibility of terahertz reflectometry for discrimination of human early gastric cancers,” Biomed. Opt. Express 6(4), 1398–1406 (2015).
[Crossref] [PubMed]

X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54(36), 10641–10649 (2015).
[Crossref] [PubMed]

B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (3)

2011 (2)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

2010 (3)

2009 (1)

2008 (1)

2007 (2)

2006 (2)

C. W. Zheng, Y. J. Zhang, and D. M. Zhao, “Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Gaussian beam,” Optik (Stuttg.) 117(3), 118–122 (2006).
[Crossref]

Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
[Crossref] [PubMed]

2005 (1)

2001 (1)

2000 (1)

1996 (1)

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
[Crossref]

1994 (1)

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

1987 (1)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Akturk, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Aleksanyan, A.

Alexander, M.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Allen, L.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
[Crossref]

Arnold, C. L.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Bakunov, M. I.

Bitman, A.

Bliss, D.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Bonanomi, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Brasselet, E.

Brzobohatý, O.

Chakraborty, S.

Cheng, M.

Choporova, Y. Y.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
[Crossref] [PubMed]

Cizmár, T.

Couairon, A.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Courvoisier, F.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Cui, Y.

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Davies, A. G.

Dean, P.

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Dudley, J. M.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Durnin, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Fallahi, A.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Feng, S.

Gao, P.

Gatto, A.

Guo, L.

Haam, S.

Han, P.

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

He, J.

Helm, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Higuchi, T.

Hong, K. H.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Hu, D.

Huang, Q.

Huang, W. R.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Hubrich, R.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Huh, Y. M.

Imai, R.

Itina, T.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Jackson, J. B.

Jahn, D.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Jedrkiewicz, O.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Jen, A. K. Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Jeon, T. I.

Ji, Y. B.

Jiang, Z.

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Jukna, V.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Kan, Q.

Kanda, N.

Kärtner, F. X.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Kazanskiy, N. L.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

Khanna, S. P.

Khonina, S. N.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

Kim, H.

Kim, S. H.

Knyazev, B. A.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
[Crossref] [PubMed]

Koch, M.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Konishi, K.

Kulipanov, G. N.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

Kuwata-Gonokami, M.

Lachab, M.

Larkin, J.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Lee, G. M.

Lee, S. K.

Lei, M.

Li, J.

Linfield, E. H.

Liu, C.

Liu, J.

Luo, J. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Martelli, P.

Martinelli, M.

Menu, M.

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Miller, R. J. D.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Mitkov, M. S.

B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
[Crossref] [PubMed]

Mittendorff, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Moneta, G.

Monnai, Y.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Moriena, G.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Moshe, I.

Mourou, G. A.

Mysyrowicz, A.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nahata, A.

Nanni, E. A.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Niu, L.

Noh, S. K.

Oh, S. J.

Padgett, M. J.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
[Crossref]

Park, C. H.

Pavelyev, V. S.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
[Crossref] [PubMed]

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Ravi, K.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Ren, K. F.

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Rice, A.

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Robertson, D. A.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
[Crossref]

Scheglov, M. A.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

Schneider, H.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Shaukat, M. U.

Sheng, X.

Shi, J.

Shinoda, H.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Skryl, A. S.

Smith, G. M.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
[Crossref]

Son, J. H.

Stoian, R.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Suh, J. S.

Sun, W.

Sun, W. F.

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Tacca, M.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Trapani, P. D.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Turnbull, G. A.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
[Crossref]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vinokurov, N. A.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

Volodkin, B. O.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
[Crossref] [PubMed]

Volotovsky, S. G.

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

Wang, K.

Wang, L.

Wang, S.

Wang, X.

Wang, X. K.

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Wei, X.

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Winful, H. G.

Winnerl, S.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Withayachumnankul, W.

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Wu, Y.

Xie, C.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Xie, Z.

Xu, X. G.

Yang, M.

Yang, Y.

Yang, Z.

Yao, B.

Ye, J.

Ye, J. S.

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

Ye, T.

Zalevsky, Z.

Zemánek, P.

Zhabin, V. N.

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

Zhan, Q.

Zhang, X. C.

Z. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. 39(17), 2982–2987 (2000).
[Crossref] [PubMed]

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Zhang, Y.

Zhang, Y. J.

C. W. Zheng, Y. J. Zhang, and D. M. Zhao, “Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Gaussian beam,” Optik (Stuttg.) 117(3), 118–122 (2006).
[Crossref]

Zhang, Z.

Zhao, D. M.

C. W. Zheng, Y. J. Zhang, and D. M. Zhao, “Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Gaussian beam,” Optik (Stuttg.) 117(3), 118–122 (2006).
[Crossref]

Zheng, C.

Zheng, C. W.

C. W. Zheng, Y. J. Zhang, and D. M. Zhao, “Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Gaussian beam,” Optik (Stuttg.) 117(3), 118–122 (2006).
[Crossref]

Zheng, J.

Zhou, X. H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Zhu, W.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Y. Monnai, D. Jahn, W. Withayachumnankul, M. Koch, and H. Shinoda, “Terahertz plasmonic Bessel beamformer,” Appl. Phys. Lett. 106(2), 021101 (2015).
[Crossref]

Biomed. Opt. Express (1)

J. Appl. Phys. (1)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. D. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

J. Mod. Opt. (1)

S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Phys. At. Mol. Opt. Phys. (1)

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. M. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. D. Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. At. Mol. Opt. Phys. 48(9), 094006 (2015).
[Crossref]

Nat. Commun. (1)

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

New J. Phys. (1)

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[Crossref]

Opt. Commun. (2)

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283(23), 4626–4632 (2010).
[Crossref] [PubMed]

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4-6), 183–188 (1996).
[Crossref]

Opt. Express (7)

Opt. Lett. (6)

Optica (1)

Optik (Stuttg.) (1)

C. W. Zheng, Y. J. Zhang, and D. M. Zhao, “Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Gaussian beam,” Optik (Stuttg.) 117(3), 118–122 (2006).
[Crossref]

Phys. Rev. A (1)

Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, and V. N. Zhabin, “High-power Bessel beams with orbital angular momentum in the terahertz range,” Phys. Rev. A 96(2), 023846 (2017).
[Crossref]

Phys. Rev. Lett. (2)

B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, and B. O. Volodkin, “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).
[Crossref] [PubMed]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup and samples. (a) THz focal-plane imaging system. (b) Photograph of a Teflon spiral phase plate. (c) Photographs of Teflon axicons with opening angles of 30°, 25°, 20°, 15°.
Fig. 2
Fig. 2 Characterization of the Ex component at 0.5 THz for a linearly polarized THz vortex Bessel beam generated by using the SPP and the axicon with the opening angle of 30°. (a) shows the normalized longitudinal Ex amplitude profile and transverse amplitude cross-sections at z = 4 mm, 8 mm, 12 mm, 16 mm, 20 mm, respectively. The positions of these transverse cross-sections are marked by the white dashed lines on the longitudinal amplitude pattern. (b) presents the wrapped Ex phase distributions on the longitudinal and transverse cross-sections. (c) and (d) exhibit the corresponding simulated amplitude and phase patterns by using the vectorial Rayleigh diffraction integral. (e) gives the experimental and simulated amplitude profile curves, which are extracted on the line of y = 0 mm at z = 12 mm from (a) and (c). (f) presents the corresponding experimental and simulated phase profile curves.
Fig. 3
Fig. 3 Characterization of the Ez component at 0.5 THz for a linearly polarized THz vortex Bessel beam. (a) shows the Ez amplitude distributions on the longitudinal profile and transverse cross-sections at z = 4 mm, 8 mm, 12 mm, 16 mm, 20 mm. (b) presents the Ez phase patterns on the longitudinal and transverse cross-sections. (c) and (d) give the corresponding simulated amplitude and phase distributions of the Ez component. (e) and (f) exhibit the amplitude as well as phase profile curves extracted from the experimental and simulation results on the line of y = 0 mm at z = 12 mm.
Fig. 4
Fig. 4 Comparison of the Ex components for the linearly polarized THz vortex Bessel beams generated by utilizing the SPP and the Teflon axicons with the opening angles of α = 30°, 25°, 20°, 15°. (a) shows the normalized longitudinal amplitude distributions of Ex with α = 30°, 25°, 20°, 15° at 0.5 THz on the x-z plane. The normalized transverse amplitude profile curves with α = 30°, 25°, 20°, 15° are extracted at z = 12 mm, 16 mm, 22 mm, 30 mm, respectively. The white dashed lines indicate the positions of these curves. The longitudinal amplitude profile curves along the z direction are also extracted from the corresponding maximal amplitude positions and are plotted together. (b) gives the wrapped longitudinal phase patterns with different αon the x-z plane. The corresponding transverse phase profile curves with different αare extracted and compared. The unwrapped longitudinal phase evolution curves along the z direction are also extracted and together plotted.
Fig. 5
Fig. 5 Comparison of the Ez components for the linearly polarized THz vortex Bessel beams with α = 30°, 25°, 20°, 15°. (a) gives the longitudinal Ez amplitude profiles with α = 30°, 25°, 20°, 15° at 0.5 THz on the x-z plane. The normalized transverse amplitude profile curves with α = 30°, 25°, 20°, 15° are extracted and exhibited at z = 12 mm, 16 mm, 22 mm, 30 mm. The normalized longitudinal amplitude profile curves with different αalong the optical axis are obtained and compared. (b) shows the wrapped longitudinal Ez phase patterns with different α. The corresponding transverse phase profile curves with different α are extracted. The unwrapped longitudinal phase evolution curves with different αare obtained and compared.
Fig. 6
Fig. 6 Distributions of the Ex and Ey components for the right circularly polarized THz vortex Bessel beam generated by using the TQWP, the SPP, and the axicon with α = 30°. (a) and (b) present the normalized amplitude and wrapped phase images of Ex at 0.5 THz on the position of the THz focal spot. (c) and (d) show the amplitude and phase distributions of Ey.
Fig. 7
Fig. 7 Distributions of the Ez component for the right circularly polarized THz vortex Bessel beam. (a) shows the longitudinal Ez amplitude profile and transverse amplitude cross-sections at z = 4 mm, 8 mm, 12 mm, 16 mm, 20 mm, respectively. (b) gives the corresponding wrapped Ez phase patterns on the longitudinal and transverse cross-sections. (c) and (d) present the simulated amplitude and phase images on the x-z and x-y planes by using the vectorial Rayleigh diffraction integral for a radially polarized THz Bessel beam.
Fig. 8
Fig. 8 Distributions of the Ez component on the position of the focal spot for the left circularly polarized THz vortex Bessel beam. (a) and (b) give the experimental normalized amplitude and wrapped phase patterns. (c) and (d) show the simulated amplitude and phase patterns for a radially polarized THz Bessel beam with a topological charge of 2.
Fig. 9
Fig. 9 Comparison of the Ez components for the circularly polarized THz vortex Bessel beams with α = 30°, 25°, 20°, 15°. (a)-(d) give the Ez amplitude distributions with α = 30°, 25°, 20°, 15° at 0.5 THz on the positions of their focal spots. (e)-(h) show the corresponding phase patterns.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

h = l λ Δ n ,
Z max = ω 0 tan [ arc sin ( n sin α ) α ] ,
E x ( ρ , φ , z ) = j z π exp ( j k r ) λ r 2 0 L d ρ 0 exp ( μ ) ρ 0 × { [ j ( t p cos θ + t s ) exp ( j φ ) + j 2 ( t p cos θ t s ) exp ( j φ ) ] J 1 ( η ) j 2 ( t p cos θ t s ) exp ( 3 j φ ) J 3 ( η ) } ,
η = k ρ ρ 0 r ,
μ = [ ρ 0 2 ω 0 2 + j k ρ 0 2 2 r j k ρ 0 ( n 1 ) tan α ] .
E z ( ρ , φ , z ) = j π exp ( j k r ) λ r 2 0 L d ρ 0 exp ( μ ) ρ 0 × [ 1 2 ( t p cos θ + t s ) ρ 0 J 0 ( η ) + j ( t p cos θ + t s ) ρ cos φ exp ( j φ ) J 1 ( η ) + 1 2 ( t p cos θ + t s ) ρ 0 exp ( 2 j φ ) J 2 ( η ) ] ,
E z ( ρ , φ , z ) = j k exp ( j k r ) t p cos θ r 2 0 L d ρ 0 exp ( μ ) ρ 0 [ ρ 0 J 0 ( η ) + j ρ J 1 ( η ) ] .
E z ( ρ , φ , z ) = j k exp ( j k r ) t p cos θ 2 r 2 0 L d ρ 0 exp ( μ ) ρ 0 × [ j ρ J 1 ( η ) + 2 ρ 0 J 2 ( η ) j ρ J 3 ( η ) ] exp ( 2 j φ ) .

Metrics