Abstract

We report a high power quasi-continuous-wave (QCW) 620 nm laser from an external cavity diamond Raman laser utilizing intracavity frequency doubling in lithium triborate. Output power of 30 W for durations of 0.25 ms at 15% conversion efficiency was achieved with a beam quality factor M2 = 1.1 from a free-running Nd:YAG pump laser of M2 = 1.5. The critical design parameters that affect conversion efficiency and power were analysed with the aid of an analytical model. By adaptation to other pump technologies, the diamond approach provides a novel pathway towards high brightness CW beam generation in the visible and ultraviolet regions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement

Zhenxu Bai, Robert J. Williams, Ondrej Kitzler, Soumya Sarang, David J. Spence, and Richard P. Mildren
Opt. Express 26(16) 19797-19803 (2018)

Modelling and optimization of continuous-wave external cavity Raman lasers

Ondrej Kitzler, Aaron McKay, David J. Spence, and Richard P. Mildren
Opt. Express 23(7) 8590-8602 (2015)

Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser

Ondrej Kitzler, Aaron McKay, and Richard P. Mildren
Opt. Lett. 37(14) 2790-2792 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30, 2454–2456 (2005).
  2. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE. J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
    [Crossref]
  3. L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34, 1687–1689 (2009).
  4. V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
    [Crossref]
  5. L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
    [Crossref]
  6. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).
  7. Q. Xiao, P. Yan, D. Li, J. Sun, X. Wang, Y. Huang, and M. Gong, “Bidirectional pumped high power raman fiber laser,” Opt. Express 24, 6758–6768 (2016).
    [Crossref] [PubMed]
  8. L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, X. Gu, and Y. Feng, “Kilowatt ytterbium-Raman fiber laser,” Opt. Express 22, 18483–18489 (2014).
    [Crossref] [PubMed]
  9. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2009).
    [Crossref]
  10. V. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
  11. O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).
  12. R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
    [Crossref]
  13. A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers,” Laser Photonics Rev.  11, 1600130 (2017).
    [Crossref]
  14. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quant. Electron. 32, 121–158 (2008).
    [Crossref]
  15. A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18, 5984–5992 (2010).
    [Crossref] [PubMed]
  16. Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
    [Crossref]
  17. Y. K. Bu, C. Q. Tan, and N. Chen, “Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser,” Laser Phys. Lett. 8, 439–442 (2011).
    [Crossref]
  18. A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
    [Crossref]
  19. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18, 20013–20018 (2010).
    [Crossref] [PubMed]
  20. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd : YVO4 self-Raman laser,” Opt. Lett. 36, 1428–1430 (2011).
  21. W. Liang, X. H. Zhang, and J. Xia, “Efficient continuous wave laser at 560 nm by intracavity frequency summation of fundamental and first-stokes wavelengths in a Nd:YVO4 − BaWO4 Raman laser,” Laser Phys. 21, 667–669 (2011).
    [Crossref]
  22. J. Lin and H. M. Pask, “Nd : GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108, 17–24 (2012).
    [Crossref]
  23. J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express 20, 9841–9850 (2012).
    [Crossref] [PubMed]
  24. Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35, 2964–2966 (2010).
  25. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top Quantum Electron. 19, 1400108 (2013).
    [Crossref]
  26. R. P. Mildren and J. A. Piper, “Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes,” Opt. Express 16, 3261–3272 (2008).
    [Crossref] [PubMed]
  27. R. P. Mildren, H. Ogilvy, and J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32, 814–816 (2007).
  28. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).
  29. R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µ m to 1.49 µ m in diamond,” Opt. Express 25, 749–757 (2017).
    [Crossref] [PubMed]
  30. H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).
  31. O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
    [Crossref] [PubMed]
  32. R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), (2013).
    [Crossref]
  33. A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).
  34. I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
    [Crossref]
  35. I. Friel, “Optical quality diamond grown by chemical vapor deposition,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), pp. 35–69 (2013).
    [Crossref]
  36. http://www.castechus.com/caslbo.htm , “Castech Inc,”.
  37. S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).
  38. N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12, 124–131 (1995).
  39. Q. Zheng, J.-Y. Wang, and L. Zhao, “2.23 W diode-pumped Nd:YVO4/LBO Laser at 671 nm,” Opt. Laser Technol. 36, 485–487 (2004).
    [Crossref]
  40. R. Zhou, S. Ruan, C. Du, and J. Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser,” Opt. Commun. 282, 605–610 (2009).
  41. F. Q. Jia, “High power continues wave laser diode array end pumped Nd:YAG/LBO red lasers operated at 669 nm and 659 nm,” Laser Phys. 20, 1559–1563 (2010).
    [Crossref]
  42. Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG laser,” IEEE J. Quantum Elect. 35, 1737–1740 (1999).
    [Crossref]
  43. A. Härkönen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pessa, and O. G. Okhotnikov, “High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm,” Opt. Express 15, 3224–3229 (2007).
    [Crossref] [PubMed]
  44. A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express 18, 21645–21650 (2010).
    [Crossref] [PubMed]
  45. T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
    [Crossref]
  46. J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77–81 (2005).
    [Crossref] [PubMed]
  47. J. S. Osinski, B. Lu, H. Zhao, and B. Schmitt, “High power continuous-wave operation of 630 nm-band laser diode arrays,” Electron. Lett. 34, 2336–2337 (1998).
  48. Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).
  49. A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
    [Crossref]
  50. R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21, 13818–13823 (2013).
    [Crossref] [PubMed]
  51. O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3, 876–881 (2016).
    [Crossref]
  52. O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42, 1229–1232 (2017).
  53. T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
    [Crossref]
  54. T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16, 1546–1551 (2008).
    [Crossref] [PubMed]
  55. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett. 32, 955–957 (2007).
  56. D. J. Berkeland, F. C. Cruz, and J. C. Bergquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36, 4159–4162 (1997).
    [Crossref] [PubMed]
  57. S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
  58. Y. Kaneda, J. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33, 1705–1707 (2008).
  59. Y. Taira, “High-power continuous-wave ultraviolet generation by frequency doubling of an argon laser,” Jpn. J. Appl. Phys. 31, L682–L684 (1992).
  60. B. Wellmann, D. J. Spence, and D. W. Coutts, “Tunable continuous-wave deep-ultraviolet laser based on Ce: LiCAF,” Opt. Lett. 39, 1306–1309 (2014).

2017 (3)

2016 (3)

2015 (3)

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

2014 (3)

2013 (3)

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21, 13818–13823 (2013).
[Crossref] [PubMed]

V. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top Quantum Electron. 19, 1400108 (2013).
[Crossref]

2012 (3)

2011 (5)

Y. K. Bu, C. Q. Tan, and N. Chen, “Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser,” Laser Phys. Lett. 8, 439–442 (2011).
[Crossref]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd : YVO4 self-Raman laser,” Opt. Lett. 36, 1428–1430 (2011).

W. Liang, X. H. Zhang, and J. Xia, “Efficient continuous wave laser at 560 nm by intracavity frequency summation of fundamental and first-stokes wavelengths in a Nd:YVO4 − BaWO4 Raman laser,” Laser Phys. 21, 667–669 (2011).
[Crossref]

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

2010 (9)

A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express 18, 21645–21650 (2010).
[Crossref] [PubMed]

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35, 2964–2966 (2010).

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

F. Q. Jia, “High power continues wave laser diode array end pumped Nd:YAG/LBO red lasers operated at 669 nm and 659 nm,” Laser Phys. 20, 1559–1563 (2010).
[Crossref]

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
[Crossref]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18, 20013–20018 (2010).
[Crossref] [PubMed]

A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18, 5984–5992 (2010).
[Crossref] [PubMed]

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

2009 (4)

Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2009).
[Crossref]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34, 1687–1689 (2009).

R. Zhou, S. Ruan, C. Du, and J. Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser,” Opt. Commun. 282, 605–610 (2009).

2008 (4)

2007 (4)

2005 (3)

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77–81 (2005).
[Crossref] [PubMed]

H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30, 2454–2456 (2005).

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

2004 (2)

1999 (1)

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG laser,” IEEE J. Quantum Elect. 35, 1737–1740 (1999).
[Crossref]

1998 (1)

J. S. Osinski, B. Lu, H. Zhao, and B. Schmitt, “High power continuous-wave operation of 630 nm-band laser diode arrays,” Electron. Lett. 34, 2336–2337 (1998).

1997 (2)

D. J. Berkeland, F. C. Cruz, and J. C. Bergquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36, 4159–4162 (1997).
[Crossref] [PubMed]

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

1995 (1)

1992 (2)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).

Y. Taira, “High-power continuous-wave ultraviolet generation by frequency doubling of an argon laser,” Jpn. J. Appl. Phys. 31, L682–L684 (1992).

Bai, Z.

Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).

Barnes, N. P.

Bergquist, J. C.

Berkeland, D. J.

Biraben, F.

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

Bourzeix, S.

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

Bowers, M. S.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).

Bu, Y. K.

Y. K. Bu, C. Q. Tan, and N. Chen, “Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser,” Laser Phys. Lett. 8, 439–442 (2011).
[Crossref]

Burakevich, V. N.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

Calia, D. B.

Calvez, S.

Chen, N.

Y. K. Bu, C. Q. Tan, and N. Chen, “Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser,” Laser Phys. Lett. 8, 439–442 (2011).
[Crossref]

Cheng, W.

Cheng, W. B.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Cormier, E.

Cousins, A. K.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).

Coutts, D. W.

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers,” Laser Photonics Rev.  11, 1600130 (2017).
[Crossref]

B. Wellmann, D. J. Spence, and D. W. Coutts, “Tunable continuous-wave deep-ultraviolet laser based on Ce: LiCAF,” Opt. Lett. 39, 1306–1309 (2014).

Cruz, F. C.

Danailov, M.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
[Crossref]

Dawson, M. D.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top Quantum Electron. 19, 1400108 (2013).
[Crossref]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77–81 (2005).
[Crossref] [PubMed]

De Beauvoir, B.

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

De Tomasi, F.

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quant. Electron. 32, 121–158 (2008).
[Crossref]

Demidovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
[Crossref]

Demidovich, A. A.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

Du, C.

R. Zhou, S. Ruan, C. Du, and J. Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser,” Opt. Commun. 282, 605–610 (2009).

Duan, Y. H.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

Durst, S.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Eguchi, N.

Eichfelder, M.

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

Eichler, H. J.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

Fallahi, M.

Fan, L.

Fan, Y. X.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

Fan, Y.-X.

Feng, Y.

Friel, I.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

I. Friel, “Optical quality diamond grown by chemical vapor deposition,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), pp. 35–69 (2013).
[Crossref]

Fujikawa, S.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG laser,” IEEE J. Quantum Elect. 35, 1737–1740 (1999).
[Crossref]

Geoghegan, S. L.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Gong, M.

Grabtchikov, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
[Crossref]

Grabtchikov, A. S.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).

Gu, X.

Guina, M.

Gün, T.

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

Hader, J.

Hänsch, T. W.

Härkönen, A.

Hastie, J. E.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top Quantum Electron. 19, 1400108 (2013).
[Crossref]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77–81 (2005).
[Crossref] [PubMed]

He, B.

Hempler, N.

Hessenius, C.

Honda, Y.

Huang, Y.

Huber, G.

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

Huo, Y.

Imai, Y.

Inoue, Y.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG laser,” IEEE J. Quantum Elect. 35, 1737–1740 (1999).
[Crossref]

Jakutis-Neto, J.

Jasbeer, H.

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).

Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).

Jetter, M.

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

Jia, F. Q.

F. Q. Jia, “High power continues wave laser diode array end pumped Nd:YAG/LBO red lasers operated at 669 nm and 659 nm,” Laser Phys. 20, 1559–1563 (2010).
[Crossref]

Jia, G. H.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

Jiang, H.

Julien, L.

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

Kananovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
[Crossref]

Kaneda, Y.

Kapon, E.

Kemp, A. J.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top Quantum Electron. 19, 1400108 (2013).
[Crossref]

Kiefer, W.

Kirchner, M.

Kitaoka, Y.

Kitzler, O.

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42, 1229–1232 (2017).

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3, 876–881 (2016).
[Crossref]

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), (2013).
[Crossref]

Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).

Kojima, T.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG laser,” IEEE J. Quantum Elect. 35, 1737–1740 (1999).
[Crossref]

Kokh, A.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Kokh, K.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Konno, S.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG laser,” IEEE J. Quantum Elect. 35, 1737–1740 (1999).
[Crossref]

Kononova, N.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Konttinen, J.

Kubota, S.

Laakso, A.

Lee, A. J.

Leinonen, T.

Lhermite, J.

Li, D.

Li, L.

Li, S.

Li, X.

Li, Y.-Q.

Liang, W.

W. Liang, X. H. Zhang, and J. Xia, “Efficient continuous wave laser at 560 nm by intracavity frequency summation of fundamental and first-stokes wavelengths in a Nd:YVO4 − BaWO4 Raman laser,” Laser Phys. 21, 667–669 (2011).
[Crossref]

Lin, J.

Lisinetskii, V. A.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).

Liu, C.

Lu, B.

J. S. Osinski, B. Lu, H. Zhao, and B. Schmitt, “High power continuous-wave operation of 630 nm-band laser diode arrays,” Electron. Lett. 34, 2336–2337 (1998).

Lu, J.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Lü, Y.

Lü, Y. F.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Lupinski, D.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Lux, O.

Lyytikäinen, J.

Maksimenka, R.

Malcolm, G. P. A.

Markert, F.

Masuda, H.

McKay, A.

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers,” Laser Photonics Rev.  11, 1600130 (2017).
[Crossref]

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).

Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).

McKay, A. M.

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), (2013).
[Crossref]

Mennerat, G.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Mereuta, A.

Metz, P.

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

Michler, P.

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

Mildren, R. P.

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers,” Laser Photonics Rev.  11, 1600130 (2017).
[Crossref]

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42, 1229–1232 (2017).

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µ m to 1.49 µ m in diamond,” Opt. Express 25, 749–757 (2017).
[Crossref] [PubMed]

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3, 876–881 (2016).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).

R. P. Mildren and J. A. Piper, “Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes,” Opt. Express 16, 3261–3272 (2008).
[Crossref] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quant. Electron. 32, 121–158 (2008).
[Crossref]

R. P. Mildren, H. Ogilvy, and J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32, 814–816 (2007).

Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), (2013).
[Crossref]

Miyazono, K.

Moloney, J. V.

Mori, Y.

Nez, F.

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

Nicholson, J. W.

Nishioka, M.

Nold, J.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

Ogilvy, H.

Okhotnikov, O. G.

Orlovich, V.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
[Crossref]

Orlovich, V. A.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).

Orsila, L.

Osinski, J. S.

J. S. Osinski, B. Lu, H. Zhao, and B. Schmitt, “High power continuous-wave operation of 630 nm-band laser diode arrays,” Electron. Lett. 34, 2336–2337 (1998).

Parrotta, D. C.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top Quantum Electron. 19, 1400108 (2013).
[Crossref]

Pask, H.

Pask, H. M.

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42, 1229–1232 (2017).

J. Lin and H. M. Pask, “Nd : GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108, 17–24 (2012).
[Crossref]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd : YVO4 self-Raman laser,” Opt. Lett. 36, 1428–1430 (2011).

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18, 20013–20018 (2010).
[Crossref] [PubMed]

A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18, 5984–5992 (2010).
[Crossref] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quant. Electron. 32, 121–158 (2008).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE. J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30, 2454–2456 (2005).

Pessa, M.

Peyghambarian, N.

Piper, J. A.

Qi, Y.

Rantamäki, A.

Rautiainen, J.

Roßbach, R.

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

Royon, R.

Ruan, S.

R. Zhou, S. Ruan, C. Du, and J. Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser,” Opt. Commun. 282, 605–610 (2009).

Sabella, A.

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), (2013).
[Crossref]

Saito, M.

Sarang, S.

Sarger, L.

Sasaki, T.

Scarsbrook, G. A.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Scheid, M.

Schmitt, B.

J. S. Osinski, B. Lu, H. Zhao, and B. Schmitt, “High power continuous-wave operation of 630 nm-band laser diode arrays,” Electron. Lett. 34, 2336–2337 (1998).

Schmitt, M.

Schreiber, T.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

Schulz, W.-M.

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

Schwarzbäck, T.

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

Seamans, J. F.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).

Shimatani, H.

Shimizu, Y.

Sirbu, A.

Spence, D. J.

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42, 1229–1232 (2017).

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µ m to 1.49 µ m in diamond,” Opt. Express 25, 749–757 (2017).
[Crossref] [PubMed]

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers,” Laser Photonics Rev.  11, 1600130 (2017).
[Crossref]

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3, 876–881 (2016).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).

B. Wellmann, D. J. Spence, and D. W. Coutts, “Tunable continuous-wave deep-ultraviolet laser based on Ce: LiCAF,” Opt. Lett. 39, 1306–1309 (2014).

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18, 20013–20018 (2010).
[Crossref] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quant. Electron. 32, 121–158 (2008).
[Crossref]

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), (2013).
[Crossref]

Strecker, M.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

Südmeyer, T.

Sun, G. C.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Sun, J.

Supradeepa, V.

Taira, Y.

Y. Taira, “High-power continuous-wave ultraviolet generation by frequency doubling of an argon laser,” Jpn. J. Appl. Phys. 31, L682–L684 (1992).

Tan, C. Q.

Y. K. Bu, C. Q. Tan, and N. Chen, “Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser,” Laser Phys. Lett. 8, 439–442 (2011).
[Crossref]

Taylor, L. R.

Tidwell, S. C.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).

Tu, C. Y.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

Tuomisto, P.

Turpin, P. Y.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

Twitchen, D. J.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Villeval, P.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Vlezko, V.

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

Walz, J.

Wang, H. T.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

Wang, H.-T.

Wang, J.

Wang, J.-Y.

Q. Zheng, J.-Y. Wang, and L. Zhao, “2.23 W diode-pumped Nd:YVO4/LBO Laser at 671 nm,” Opt. Laser Technol. 36, 485–487 (2004).
[Crossref]

Wang, Q.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34, 1687–1689 (2009).

Wang, X.

Webster, S. C.

Wellmann, B.

Wetter, N. U.

Williams, R. J.

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µ m to 1.49 µ m in diamond,” Opt. Express 25, 749–757 (2017).
[Crossref] [PubMed]

H. Jasbeer, R. J. Williams, O. Kitzler, A. McKay, S. Sarang, J. Lin, and R. P. Mildren, “Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance,” J. Opt. Soc. Am. B 33, B56–B64 (2016).

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).

Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).

Williams-Byrd, J. A.

Xia, J.

W. Liang, X. H. Zhang, and J. Xia, “Efficient continuous wave laser at 560 nm by intracavity frequency summation of fundamental and first-stokes wavelengths in a Nd:YVO4 − BaWO4 Raman laser,” Laser Phys. 21, 667–669 (2011).
[Crossref]

Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35, 2964–2966 (2010).

Xiao, Q.

Xiong, Z.

Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35, 2964–2966 (2010).

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Xu, L. J.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Yan, P.

Yao, J.

R. Zhou, S. Ruan, C. Du, and J. Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser,” Opt. Commun. 282, 605–610 (2009).

Yarborough, J.

Yoshimura, M.

Zhang, H.

Zhang, L.

Zhang, X.

Zhang, X. H.

W. Liang, X. H. Zhang, and J. Xia, “Efficient continuous wave laser at 560 nm by intracavity frequency summation of fundamental and first-stokes wavelengths in a Nd:YVO4 − BaWO4 Raman laser,” Laser Phys. 21, 667–669 (2011).
[Crossref]

Zhao, H.

J. S. Osinski, B. Lu, H. Zhao, and B. Schmitt, “High power continuous-wave operation of 630 nm-band laser diode arrays,” Electron. Lett. 34, 2336–2337 (1998).

Zhao, L.

Q. Zheng, J.-Y. Wang, and L. Zhao, “2.23 W diode-pumped Nd:YVO4/LBO Laser at 671 nm,” Opt. Laser Technol. 36, 485–487 (2004).
[Crossref]

Zhao, Z. M.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Zheng, Q.

Q. Zheng, J.-Y. Wang, and L. Zhao, “2.23 W diode-pumped Nd:YVO4/LBO Laser at 671 nm,” Opt. Laser Technol. 36, 485–487 (2004).
[Crossref]

Zhou, J.

Zhou, R.

R. Zhou, S. Ruan, C. Du, and J. Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser,” Opt. Commun. 282, 605–610 (2009).

Appl. Opt. (1)

Appl. Phys. B (3)

T. Schwarzbäck, M. Eichfelder, W.-M. Schulz, R. Roßbach, M. Jetter, and P. Michler, “Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power,” Appl. Phys. B 102, 789–794 (2011).
[Crossref]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd : YVO4 laser,” Appl. Phys. B 94, 553–557 (2009).
[Crossref]

J. Lin and H. M. Pask, “Nd : GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output,” Appl. Phys. B 108, 17–24 (2012).
[Crossref]

Appl. Phys. Lett. (1)

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

Electron. Lett. (1)

J. S. Osinski, B. Lu, H. Zhao, and B. Schmitt, “High power continuous-wave operation of 630 nm-band laser diode arrays,” Electron. Lett. 34, 2336–2337 (1998).

IEEE J. Quantum Elect. (1)

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG laser,” IEEE J. Quantum Elect. 35, 1737–1740 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, and A. K. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28, 997–1009 (1992).

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51, 1–8 (2015).

IEEE J. Sel. Top Quantum Electron. (1)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top Quantum Electron. 19, 1400108 (2013).
[Crossref]

IEEE. J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE. J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[Crossref]

J. Cryst. Growth (1)

A. Kokh, N. Kononova, G. Mennerat, P. Villeval, S. Durst, D. Lupinski, V. Vlezko, and K. Kokh, “Growth of high quality large size LBO crystals for high energy second harmonic generation,” J. Cryst. Growth 312, 1774–1778 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

Y. Taira, “High-power continuous-wave ultraviolet generation by frequency doubling of an argon laser,” Jpn. J. Appl. Phys. 31, L682–L684 (1992).

Laser Photonics Rev (1)

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Diamond-based concept for combining beams at very high average powers,” Laser Photonics Rev.  11, 1600130 (2017).
[Crossref]

Laser Photonics Rev. (1)

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9, 405–411 (2015).
[Crossref]

Laser Phys. (2)

W. Liang, X. H. Zhang, and J. Xia, “Efficient continuous wave laser at 560 nm by intracavity frequency summation of fundamental and first-stokes wavelengths in a Nd:YVO4 − BaWO4 Raman laser,” Laser Phys. 21, 667–669 (2011).
[Crossref]

F. Q. Jia, “High power continues wave laser diode array end pumped Nd:YAG/LBO red lasers operated at 669 nm and 659 nm,” Laser Phys. 20, 1559–1563 (2010).
[Crossref]

Laser Phys. Lett. (4)

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71 (2005).
[Crossref]

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010).
[Crossref]

Y. K. Bu, C. Q. Tan, and N. Chen, “Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser,” Laser Phys. Lett. 8, 439–442 (2011).
[Crossref]

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7, 573–578 (2010).
[Crossref]

Opt. Commun. (2)

R. Zhou, S. Ruan, C. Du, and J. Yao, “High-power continuous-wave diode-end-pumped intracavity-frequency-doubled Nd:GdVO4/LBO red laser,” Opt. Commun. 282, 605–610 (2009).

S. Bourzeix, B. De Beauvoir, F. Nez, F. De Tomasi, L. Julien, and F. Biraben, “Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).

Opt. Express (14)

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13, 77–81 (2005).
[Crossref] [PubMed]

A. Härkönen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pessa, and O. G. Okhotnikov, “High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm,” Opt. Express 15, 3224–3229 (2007).
[Crossref] [PubMed]

Q. Xiao, P. Yan, D. Li, J. Sun, X. Wang, Y. Huang, and M. Gong, “Bidirectional pumped high power raman fiber laser,” Opt. Express 24, 6758–6768 (2016).
[Crossref] [PubMed]

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µ m to 1.49 µ m in diamond,” Opt. Express 25, 749–757 (2017).
[Crossref] [PubMed]

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16, 1546–1551 (2008).
[Crossref] [PubMed]

R. P. Mildren and J. A. Piper, “Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes,” Opt. Express 16, 3261–3272 (2008).
[Crossref] [PubMed]

Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2009).
[Crossref]

A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18, 5984–5992 (2010).
[Crossref] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18, 20013–20018 (2010).
[Crossref] [PubMed]

A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser,” Opt. Express 18, 21645–21650 (2010).
[Crossref] [PubMed]

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21, 13818–13823 (2013).
[Crossref] [PubMed]

J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express 20, 9841–9850 (2012).
[Crossref] [PubMed]

L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, X. Gu, and Y. Feng, “Kilowatt ytterbium-Raman fiber laser,” Opt. Express 22, 18483–18489 (2014).
[Crossref] [PubMed]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23, 8590–8602 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

Q. Zheng, J.-Y. Wang, and L. Zhao, “2.23 W diode-pumped Nd:YVO4/LBO Laser at 671 nm,” Opt. Laser Technol. 36, 485–487 (2004).
[Crossref]

Opt. Lett. (13)

M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett. 32, 955–957 (2007).

H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30, 2454–2456 (2005).

R. P. Mildren, H. Ogilvy, and J. A. Piper, “Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm,” Opt. Lett. 32, 814–816 (2007).

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29, 2524–2526 (2004).

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37, 2790–2792 (2012).

V. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).

B. Wellmann, D. J. Spence, and D. W. Coutts, “Tunable continuous-wave deep-ultraviolet laser based on Ce: LiCAF,” Opt. Lett. 39, 1306–1309 (2014).

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39, 4152–4155 (2014).

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd : YVO4 self-Raman laser,” Opt. Lett. 36, 1428–1430 (2011).

Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35, 2964–2966 (2010).

Y. Kaneda, J. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33, 1705–1707 (2008).

L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34, 1687–1689 (2009).

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42, 1229–1232 (2017).

Optica (1)

Proc. SPIE (1)

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Prog. Quant. Electron. (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quant. Electron. 32, 121–158 (2008).
[Crossref]

Other (4)

I. Friel, “Optical quality diamond grown by chemical vapor deposition,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), pp. 35–69 (2013).
[Crossref]

http://www.castechus.com/caslbo.htm , “Castech Inc,”.

R. P. Mildren, A. Sabella, O. Kitzler, D. J. Spence, and A. M. McKay, “Diamond Raman laser design and performance,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, eds. (Weinheim Wiley-VCH Verlag GmbH & Co. KGaA), (2013).
[Crossref]

Z. Bai, R. J. Williams, H. Jasbeer, S. Sarang, O. Kitzler, A. McKay, and R. P. Mildren, “Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion,” Opt. Lett.43, in press (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental arrangement of the external cavity DRL with intracavity frequency doubling: HWP-half-wave plate, FL-focussing lens, TM-turning mirror, IC-input coupler, and OC-output coupler. The inset diagram specifies the diamond and LBO crystal orientations with respect to the propagation axis.
Fig. 2
Fig. 2 Measured and calculated Stokes power leakage (top) and SHG power (bottom) as a function of wLBO at 200 W pump power. The model parameters correspond to the optimum condition given in Tab. 1.
Fig. 3
Fig. 3 Measured SHG and Stokes power (top) and residual pump power (bottom) as a function of incident pump power for Stokes beam radius in the LBO of (a) 155 µm and (b) 550 µm. Model determined results (dashed lines) are included for comparison (for experimental conditions given in Tab.1).
Fig. 4
Fig. 4 SHG, Stokes and residual pump power as a function of pump power for wLBO = 450 µm (top), 155 µm (middle) and 70 µm (bottom) featured by under-, optimum and over-coupling regimes respectively. The parameters used for these plots are T = 0.5%, κ = 0.9%, αd = 0.37%/cm, α χ 2 = 0.37 % / cm, Ld = 8 mm, L χ 2 = 10 mm, ωP = 42 µm, ωS = 47 µm, M P 2 = 1.5, and M S 2 = 1.0.

Tables (1)

Tables Icon

Table 1 Parameters used to model the optimum and under-coupled regions corresponding to the results in Fig. 3(a) (in the second column) and 3(b) (in the third column).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P S g e n = η P P [ 1 exp ( 2 G P S i n t ) ]
P SHG = Γ ( P S i n t ) 2
P S l o s s = ( α d L d + α χ 2 L χ 2 + κ ) P S i n t
P S O C = T 2 P S i n t
P P = ( T + 2 α d L d + 2 α χ 2 L χ 2 + 2 κ ) P S i n t + 2 Γ ( P S i n t ) 2 2 η [ 1 exp ( 2 G P S i n t ) ]
P Res = P P exp ( 2 G P S i n t )
f d 1 = P dep 2 π κ w P 2 [ d n d T + ( n 1 ) ( ν + 1 ) α T + n 3 α T C r , ϕ ]
f LBO 1 = P S i n t α L χ 2 π κ w LOB 2 d n d T ln 2

Metrics