M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006).

[Crossref]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 449–458.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “Flatcam: Thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3(3), 384–397 (2017).

[Crossref]

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “Flatcam: Thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3(3), 384–397 (2017).

[Crossref]

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of International Conference on Learning Representations Workshop (ICLR, 2015), pp. 1–15.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “Flatcam: Thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3(3), 384–397 (2017).

[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Process. Mag. 25(2), 83–91 (2008).

[Crossref]

A. Mousavi and R. G. Baraniuk, “Learning to invert: Signal recovery via deep convolutional networks,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2017), pp. 2272–2276.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences 2, 183–202 (2009).

[Crossref]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).

[Crossref]

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS, 2010), pp. 249–256.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).

[Crossref]

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

X. Yuan, X. Liao, P. Llull, D. Brady, and L. Carin, “Efficient patch-based approach for compressive depth imaging,” Appl. Opt. 55(27), 7556–7564 (2016).

[Crossref]
[PubMed]

P. Llull, X. Yuan, L. Carin, and D. Brady, “Image translation for single-shot focal tomography,” Optica 2(9), 822–825 (2015).

[Crossref]

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).

[Crossref]
[PubMed]

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. J. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Process. 9(6), 964–976 (2015).

[Crossref]

T.-H. Tsai, P. Llull, X. Yuan, D. J. Brady, and L. Carin, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).

[Crossref]
[PubMed]

J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and L. Carin, “Video compressive sensing using Gaussian mixture models,” IEEE Trans. Image Process. 23(11), 4863–4878 (2014).

[Crossref]
[PubMed]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21(9) 10526–10545 (2013).

[Crossref]
[PubMed]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

A. Wagadarikar, R. John, R. Willett, and D. J. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).

[Crossref]
[PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 14–18.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” in Proceedings of International Conference on Learning Representations Workshop (ICLR, 2015), pp. 1–15.

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006).

[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

X. Yuan, X. Liao, P. Llull, D. Brady, and L. Carin, “Efficient patch-based approach for compressive depth imaging,” Appl. Opt. 55(27), 7556–7564 (2016).

[Crossref]
[PubMed]

P. Llull, X. Yuan, L. Carin, and D. Brady, “Image translation for single-shot focal tomography,” Optica 2(9), 822–825 (2015).

[Crossref]

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. J. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Process. 9(6), 964–976 (2015).

[Crossref]

T.-H. Tsai, P. Llull, X. Yuan, D. J. Brady, and L. Carin, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).

[Crossref]
[PubMed]

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-ℓ2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).

[Crossref]

J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and L. Carin, “Video compressive sensing using Gaussian mixture models,” IEEE Trans. Image Process. 23(11), 4863–4878 (2014).

[Crossref]
[PubMed]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21(9) 10526–10545 (2013).

[Crossref]
[PubMed]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds,” IEEE Trans. Sig. Process. 58(12), 6140–6155 (2010).

[Crossref]

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han, and L. Carin, “VAE Learning via Stein Variational Gradient Descent,” in Proceedings of Advances in Neural Information Processing Systems (NIPS, 2017), pp. 1–10.

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Proceedings of Advances in Neural Information Processing Systems (NIPS2016), pp. 2352–2360.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 14–18.

D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds,” IEEE Trans. Sig. Process. 58(12), 6140–6155 (2010).

[Crossref]

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” in Proceedings of International Conference on Learning Representations (ICLR, 2016), pp. 1–16.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Process. Mag. 25(2), 83–91 (2008).

[Crossref]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

[Crossref]

D. L. Donoho, “For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution,” Commun. Pure Appl. Math. 59(7), 907–934 (2006).

[Crossref]

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” in Proceedings of International Conference on Learning Representations Workshop (ICLR, 2015), pp. 1–15.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Process. Mag. 25(2), 83–91 (2008).

[Crossref]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds,” IEEE Trans. Sig. Process. 58(12), 6140–6155 (2010).

[Crossref]

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006).

[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han, and L. Carin, “VAE Learning via Stein Variational Gradient Descent,” in Proceedings of Advances in Neural Information Processing Systems (NIPS, 2017), pp. 1–10.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Proceedings of Advances in Neural Information Processing Systems (NIPS2016), pp. 2352–2360.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS, 2010), pp. 249–256.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

G. Griffin, A. D. Holub, and P. Perona, “The Caltech 256,” in Caltech Technical Report (2006).

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).

[Crossref]

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han, and L. Carin, “VAE Learning via Stein Variational Gradient Descent,” in Proceedings of Advances in Neural Information Processing Systems (NIPS, 2017), pp. 1–10.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the International Conference on Machine Learning (ICML, 2013), pp. 1–6.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 770–778.

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han, and L. Carin, “VAE Learning via Stein Variational Gradient Descent,” in Proceedings of Advances in Neural Information Processing Systems (NIPS, 2017), pp. 1–10.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Proceedings of Advances in Neural Information Processing Systems (NIPS2016), pp. 2352–2360.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

[Crossref]

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

G. Griffin, A. D. Holub, and P. Perona, “The Caltech 256,” in Caltech Technical Report (2006).

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

X. Yuan, H. Jiang, G. Huang, and P. Wilford, “SLOPE: Shrinkage of local overlapping patches estimator for lensless compressive imaging,” IEEE Sens. J. 16(22), 8091–8102 (2016).

[Crossref]

G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lensless imaging by compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 2101–2105.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the International Conference on Machine Learning (ICML, 2015), pp. 448–456.

X. Yuan, H. Jiang, G. Huang, and P. Wilford, “SLOPE: Shrinkage of local overlapping patches estimator for lensless compressive imaging,” IEEE Sens. J. 16(22), 8091–8102 (2016).

[Crossref]

G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lensless imaging by compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 2101–2105.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Process. Mag. 25(2), 83–91 (2008).

[Crossref]

K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 449–458.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of International Conference on Learning Representations Workshop (ICLR, 2015), pp. 1–15.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 449–458.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Process. Mag. 25(2), 83–91 (2008).

[Crossref]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE 86(11), 2278–2324 (1998).

[Crossref]

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han, and L. Carin, “VAE Learning via Stein Variational Gradient Descent,” in Proceedings of Advances in Neural Information Processing Systems (NIPS, 2017), pp. 1–10.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Proceedings of Advances in Neural Information Processing Systems (NIPS2016), pp. 2352–2360.

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-ℓ2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).

[Crossref]

X. Yuan, X. Liao, P. Llull, D. Brady, and L. Carin, “Efficient patch-based approach for compressive depth imaging,” Appl. Opt. 55(27), 7556–7564 (2016).

[Crossref]
[PubMed]

J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and L. Carin, “Video compressive sensing using Gaussian mixture models,” IEEE Trans. Image Process. 23(11), 4863–4878 (2014).

[Crossref]
[PubMed]

X. Liao, H. Li, and L. Carin, “Generalized alternating projection for weighted-ℓ2,1 minimization with applications to model-based compressive sensing,” SIAM J. Imag. Sci. 7, 797–823 (2014).

[Crossref]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21(9) 10526–10545 (2013).

[Crossref]
[PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 14–18.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3730–3738.

X. Yuan, X. Liao, P. Llull, D. Brady, and L. Carin, “Efficient patch-based approach for compressive depth imaging,” Appl. Opt. 55(27), 7556–7564 (2016).

[Crossref]
[PubMed]

P. Llull, X. Yuan, L. Carin, and D. Brady, “Image translation for single-shot focal tomography,” Optica 2(9), 822–825 (2015).

[Crossref]

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. J. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Process. 9(6), 964–976 (2015).

[Crossref]

T.-H. Tsai, P. Llull, X. Yuan, D. J. Brady, and L. Carin, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).

[Crossref]
[PubMed]

J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and L. Carin, “Video compressive sensing using Gaussian mixture models,” IEEE Trans. Image Process. 23(11), 4863–4878 (2014).

[Crossref]
[PubMed]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21(9) 10526–10545 (2013).

[Crossref]
[PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 14–18.

K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 449–458.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3730–3738.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the International Conference on Machine Learning (ICML, 2013), pp. 1–6.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity,” IEEE Trans. Image Process. 21(5), 2481–2499 (2012).

[Crossref]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lensless imaging by compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 2101–2105.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” in Proceedings of International Conference on Learning Representations (ICLR, 2016), pp. 1–16.

M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press, 1969).

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

A. Mousavi and R. G. Baraniuk, “Learning to invert: Signal recovery via deep convolutional networks,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2017), pp. 2272–2276.

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a single coded exposure photograph using a learned over-complete dictionary,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2011), pp. 287–294.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the International Conference on Machine Learning (ICML, 2013), pp. 1–6.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds,” IEEE Trans. Sig. Process. 58(12), 6140–6155 (2010).

[Crossref]

Y. Sun, X. Yuan, and S. Pang, “Compressive high-speed stereo imaging,” Opt. Express 25(15), 18182–18190 (2017).

[Crossref]
[PubMed]

X. Yuan, Y. Sun, and S. Pang, “Compressive video sensing with side information,” Appl. Opt. 56(10), 2697–2704 (2017).

[Crossref]
[PubMed]

X. Yuan and S. Pang, “Structured illumination temporal compressive microscopy,” Biomed. Opt. Express 7(3), 746–758 (2016).

[Crossref]
[PubMed]

Y. Sun, X. Yuan, and S. Pang, “High-speed compressive range imaging based on active illumination,” Opt. Express 24(20), 22836–22846 (2016).

[Crossref]
[PubMed]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press, 1969).

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

G. Griffin, A. D. Holub, and P. Perona, “The Caltech 256,” in Caltech Technical Report (2006).

Y. Pu, Z. Gan, R. Henao, C. Li, S. Han, and L. Carin, “VAE Learning via Stein Variational Gradient Descent,” in Proceedings of Advances in Neural Information Processing Systems (NIPS, 2017), pp. 1–10.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Proceedings of Advances in Neural Information Processing Systems (NIPS2016), pp. 2352–2360.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” in Proceedings of International Conference on Learning Representations (ICLR, 2016), pp. 1–16.

D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 770–778.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” in Proceedings of International Conference on Learning Representations Workshop (ICLR, 2015), pp. 1–15.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

[Crossref]

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “Flatcam: Thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3(3), 384–397 (2017).

[Crossref]

J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and L. Carin, “Video compressive sensing using Gaussian mixture models,” IEEE Trans. Image Process. 23(11), 4863–4878 (2014).

[Crossref]
[PubMed]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21(9) 10526–10545 (2013).

[Crossref]
[PubMed]

G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity,” IEEE Trans. Image Process. 21(5), 2481–2499 (2012).

[Crossref]

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 14–18.

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds,” IEEE Trans. Sig. Process. 58(12), 6140–6155 (2010).

[Crossref]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” in Proceedings of International Conference on Learning Representations Workshop (ICLR, 2015), pp. 1–15.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Proceedings of Advances in Neural Information Processing Systems (NIPS2016), pp. 2352–2360.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 770–778.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Process. Mag. 25(2), 83–91 (2008).

[Crossref]

Y. Sun, X. Yuan, and S. Pang, “Compressive high-speed stereo imaging,” Opt. Express 25(15), 18182–18190 (2017).

[Crossref]
[PubMed]

X. Yuan, Y. Sun, and S. Pang, “Compressive video sensing with side information,” Appl. Opt. 56(10), 2697–2704 (2017).

[Crossref]
[PubMed]

Y. Sun, X. Yuan, and S. Pang, “High-speed compressive range imaging based on active illumination,” Opt. Express 24(20), 22836–22846 (2016).

[Crossref]
[PubMed]

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the International Conference on Machine Learning (ICML, 2015), pp. 448–456.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Process. Mag. 25(2), 83–91 (2008).

[Crossref]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3730–3738.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences 2, 183–202 (2009).

[Crossref]

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).

[Crossref]
[PubMed]

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. J. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Process. 9(6), 964–976 (2015).

[Crossref]

T.-H. Tsai, P. Llull, X. Yuan, D. J. Brady, and L. Carin, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).

[Crossref]
[PubMed]

K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 449–458.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature 529, 484–489 (2016).

[Crossref]
[PubMed]

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “Flatcam: Thin, bare-sensor cameras using coded aperture and computation,” IEEE Trans. Comput. Imag. 3(3), 384–397 (2017).

[Crossref]

D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).

[Crossref]
[PubMed]

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds,” IEEE Trans. Sig. Process. 58(12), 6140–6155 (2010).

[Crossref]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3730–3738.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed improvements,” in Proceedings of Advances in Neural Information Processing Systems Workshop (NIPS, 2012), pp. 1–10.

X. Yuan, H. Jiang, G. Huang, and P. Wilford, “SLOPE: Shrinkage of local overlapping patches estimator for lensless compressive imaging,” IEEE Sens. J. 16(22), 8091–8102 (2016).

[Crossref]

G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lensless imaging by compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 2101–2105.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

[Crossref]

J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and L. Carin, “Video compressive sensing using Gaussian mixture models,” IEEE Trans. Image Process. 23(11), 4863–4878 (2014).

[Crossref]
[PubMed]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21(9) 10526–10545 (2013).

[Crossref]
[PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 14–18.

G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity,” IEEE Trans. Image Process. 21(5), 2481–2499 (2012).

[Crossref]

Y. Sun, X. Yuan, and S. Pang, “Compressive high-speed stereo imaging,” Opt. Express 25(15), 18182–18190 (2017).

[Crossref]
[PubMed]

X. Yuan, Y. Sun, and S. Pang, “Compressive video sensing with side information,” Appl. Opt. 56(10), 2697–2704 (2017).

[Crossref]
[PubMed]

X. Yuan, X. Liao, P. Llull, D. Brady, and L. Carin, “Efficient patch-based approach for compressive depth imaging,” Appl. Opt. 55(27), 7556–7564 (2016).

[Crossref]
[PubMed]

X. Yuan, H. Jiang, G. Huang, and P. Wilford, “SLOPE: Shrinkage of local overlapping patches estimator for lensless compressive imaging,” IEEE Sens. J. 16(22), 8091–8102 (2016).

[Crossref]

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

Y. Sun, X. Yuan, and S. Pang, “High-speed compressive range imaging based on active illumination,” Opt. Express 24(20), 22836–22846 (2016).

[Crossref]
[PubMed]

X. Yuan and S. Pang, “Structured illumination temporal compressive microscopy,” Biomed. Opt. Express 7(3), 746–758 (2016).

[Crossref]
[PubMed]

X. Yuan, “Compressive dynamic range imaging via Bayesian shrinkage dictionary learning,” Opt. Eng. 55, 123110 (2016).

[Crossref]

T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color polarization imaging,” Opt. Express 23(9), 11912–11926 (2015).

[Crossref]
[PubMed]

T.-H. Tsai, P. Llull, X. Yuan, D. J. Brady, and L. Carin, “Spectral-temporal compressive imaging,” Opt. Lett. 40(17), 4054–4057 (2015).

[Crossref]
[PubMed]

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. J. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Process. 9(6), 964–976 (2015).

[Crossref]

P. Llull, X. Yuan, L. Carin, and D. Brady, “Image translation for single-shot focal tomography,” Optica 2(9), 822–825 (2015).

[Crossref]

J. Yang, X. Yuan, X. Liao, P. Llull, G. Sapiro, D. J. Brady, and L. Carin, “Video compressive sensing using Gaussian mixture models,” IEEE Trans. Image Process. 23(11), 4863–4878 (2014).

[Crossref]
[PubMed]

P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21(9) 10526–10545 (2013).

[Crossref]
[PubMed]

X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, “Low-cost compressive sensing for color video and depth,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 3318–3325.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Proceedings of Advances in Neural Information Processing Systems (NIPS2016), pp. 2352–2360.

X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. J. Brady, and L. Carin, “Adaptive temporal compressive sensing for video,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2013), pp. 14–18.

X. Yuan, “Generalized alternating projection based total variation minimization for compressive sensing,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2016), pp. 2539–2543.

X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, L. Carin, and D. J. Brady, “Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world,” IEEE Sig. Process. Mag. 33(5), 95–108 (2016).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2016), pp. 770–778.

X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. J. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” IEEE J. Sel. Top. Sig. Process. 9(6), 964–976 (2015).

[Crossref]