Abstract

Four 3rd order fiber Bragg gratings were inscribed into separate cores of a 7 core multi-core fiber using the point-by-point inscription technique. A 1030 nm, 206 ± 5 fs laser was used, operating at a frequency of 1 kHz and pulse energy of 2.1 ± 0.2 µJ. Independent Bragg resonances at λB = 1541.01 ± 0.02, 1547.82 ± 0.02, 1532.66 ± 0.02, and 1537.42 ± 0.02 nm and extinction ratios of 13.97 ± 0.4, 16.02 ± 0.4, 10.08 ± 0.4 and 13.40 ± 0.4 dB were recorded. Our data analysis shows that refractive index changes, Δn, of the order 10−3 were induced. Core-specific inscription of fiber Bragg gratings in a multi-core fiber can provide a flexible and versatile platform to address the needs of recent space division multiplexed transmission and optical sensor networks.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses

Alexey Wolf, Alexandr Dostovalov, Kirill Bronnikov, and Sergey Babin
Opt. Express 27(10) 13978-13990 (2019)

Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single-and multi-core mid-IR glass fibers

Rui Suo, Joris Lousteau, Hongxia Li, Xin Jiang, Kaiming Zhou, Lin Zhang, William N MacPherson, Henry T Bookey, James S Barton, Ajoy K Kar, Animesh Jha, and Ian Bennion
Opt. Express 17(9) 7540-7548 (2009)

Femtosecond inscription and thermal testing of Bragg gratings in high concentration (40 mol%) germania-doped optical fibre

A. Donko, M. Nuñez-Velazquez, P. Barua, F. Guzman Cruz, R. Ismaeel, T. Lee, J. K. Sahu, M. Beresna, and G. Brambilla
Opt. Express 25(26) 32879-32886 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
    [Crossref]
  2. H. N. Saha, A. Mandal, and A. Sinha, “Recent Trends in the Internet of Things,” in IEEE 7th Annual Computing and Communication Workshop and Conference (2017), pp. 1–4.
    [Crossref]
  3. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  4. S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fibre Communications Conference (OSA, 1979), pp. 44–46.
  5. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]
  6. S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).
  7. E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22(25), 31575–31581 (2014).
    [Crossref] [PubMed]
  8. C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  10. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
    [Crossref]
  11. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  12. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [Crossref] [PubMed]
  13. A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .
  14. R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Lightwave Technol. 18(1), 90–101 (2000).
    [Crossref]

2014 (1)

2013 (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (1)

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

2005 (1)

2000 (1)

1996 (1)

Ams, M.

Askins, C. G.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Bai, G.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

Beresna, M.

A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .

Bland-Hawthorn, J.

Brambilla, G.

A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .

Cvetojevic, N.

Davis, K. M.

Donko, A.

A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .

Ellis, S.

Essiambre, R. J.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Feced, R.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Friebele, E. J.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Hayashi, T.

Hayes, J.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .

Hirao, K.

Iano, S.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fibre Communications Conference (OSA, 1979), pp. 44–46.

Jain, S.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

Jovanovic, N.

Jung, Y.

A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

Kang, Q.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

Kuroha, T.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fibre Communications Conference (OSA, 1979), pp. 44–46.

Lawrence, J.

Leon-Saval, S.

Lindley, E.

Mandal, A.

H. N. Saha, A. Mandal, and A. Sinha, “Recent Trends in the Internet of Things,” in IEEE 7th Annual Computing and Communication Workshop and Conference (2017), pp. 1–4.
[Crossref]

Marshall, G.

Marshall, G. D.

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Miller, G. A.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Min, S.-S.

Miura, K.

Mizuno, T.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nishimura, Y.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fibre Communications Conference (OSA, 1979), pp. 44–46.

Ono, H.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

Peele, J. R.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Petrovich, M.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

Ramos, R. T.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .

Saha, H. N.

H. N. Saha, A. Mandal, and A. Sinha, “Recent Trends in the Internet of Things,” in IEEE 7th Annual Computing and Communication Workshop and Conference (2017), pp. 1–4.
[Crossref]

Sasaki, T.

Sasaoka, E.

Sato, T.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fibre Communications Conference (OSA, 1979), pp. 44–46.

Sentsui, S.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fibre Communications Conference (OSA, 1979), pp. 44–46.

Shimakawa, O.

Sinha, A.

H. N. Saha, A. Mandal, and A. Sinha, “Recent Trends in the Internet of Things,” in IEEE 7th Annual Computing and Communication Workshop and Conference (2017), pp. 1–4.
[Crossref]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Spence, D.

Steel, M. J.

Sugimoto, N.

Taru, T.

Taunay, T. F.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Tkach, R. W.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Wasserman, L. R.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Williams, R. J.

Withford, M.

Withford, M. J.

Wright, B. M.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Zervas, M. N.

IEEE Photonics Technol. Lett. (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (1)

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Other (5)

H. N. Saha, A. Mandal, and A. Sinha, “Recent Trends in the Internet of Things,” in IEEE 7th Annual Computing and Communication Workshop and Conference (2017), pp. 1–4.
[Crossref]

A. Donko, Y. Jung, M. Beresna, J. Hayes, D. J. Richardson, and G. Brambilla, “Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber,” https://eprints.soton.ac.uk/415153/ .

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fibre Communications Conference (OSA, 1979), pp. 44–46.

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. Hayes, M. Petrovich, G. Bai, and H. Ono, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission system,” in The European Conference on Optical Communication (IEEE, 2016).

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Bragg Gratings, Photosensitivity and Poling in Glass (OSA, 2007).

Supplementary Material (1)

NameDescription
» Dataset 1       Dataset for Point-by-point Femtosecond Laser Micro-processing of Independent Core-Specific Fiber Bragg Gratings in a Multicore Fiber

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Schematic diagram of the point-by-point femtosecond inscription arrangement. b) Annotated microscope image of the 7 core MCF cross section used for the fabrication of FBGs.
Fig. 2
Fig. 2 Transmission spectra of cores 2, 3, 4 and 6 in which the Bragg gratings of resonance wavelengths λB ~1541, 1548, 1532 and 1538nm, had extinction ratios ~14, 16, 10 and 13 dB respectively.
Fig. 3
Fig. 3 A CCD image of the core 3 FBG. The image is slanted due to the orientation of the fibre during capture. The grating had a pitch = 1.605 ± 0.1 µm and refractive index modulation, Δn = (1.55 ± 0.03) × 10-4. A red laser diode was connected to core 3 and radiation mode coupling was observed.
Fig. 4
Fig. 4 The transmission spectra of the grating inscribed within core 4 of Bragg resonance λB = 1532.66 ± 0.02 nm, extinction ratio = 10.08 ± 0.4 dB and −3dB bandwidth of 0.16 ± 0.02 nm. Computational analysis applied a line of best fit and deduced the refractive index modulation associated to the grating planes Δn = (2.07 ± 0.02) × 10−3.

Tables (1)

Tables Icon

Table 1 Computational analysis of the FBGs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r= sin h 2 ( κ 2 σ ^ 2 L ) cos h 2 ( κ 2 σ ^ 2 L ) σ ^ 2 κ 2

Metrics