Abstract

In this paper, we firstly demonstrate an advanced arraying scheme in the TDM-based analog mobile fronthaul system to enhance the signal fidelity, in which the segment of the antenna carrier signal (AxC) with an appropriate length is served as the granularity for TDM aggregation. Without introducing extra processing, the entire system can be realized by simple DSP. The theoretical analysis is presented to verify the feasibility of this scheme, and to evaluate its effectiveness, the experiment with ~7-GHz bandwidth and 20 8 × 8 MIMO group signals are conducted. Results show that the segment-wise TDM is completely compatible with the MIMO-interleaved arraying, which is employed in an existing TDM scheme to improve the bandwidth efficiency. Moreover, compared to the existing TDM schemes, our scheme can not only satisfy the latency requirement of 5G but also significantly reduce the multiplexed signal bandwidth, hence providing higher signal fidelity in the bandwidth-limited fronthaul system. The experimental result of EVM verifies that 256-QAM is supportable using the segment-wise TDM arraying with only 250-ns latency, while with the ordinary TDM arraying, only 64-QAM is bearable.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High tolerance against chirp induced distortions in PAM4-based digital mobile fronthaul by sample bits interleaving

Haiyun Xin, Kuo Zhang, Yan Fu, Syed Baqar Hussain, Zidong Guo, Amber Sultan, Hao He, and Weisheng Hu
Opt. Express 26(22) 28206-28215 (2018)

Digital mobile fronthaul employing differential pulse code modulation with suppressed quantization noise

Lu Zhang, Xiaodan Pang, Oskars Ozolins, Aleksejs Udalcovs, Richard Schatz, Urban Westergren, Gunnar Jacobsen, Sergei Popov, Lena Wosinska, Shilin Xiao, Weisheng Hu, and Jiajia Chen
Opt. Express 25(25) 31921-31936 (2017)

Low-Latency High-Efficiency Mobile Fronthaul With TDM-PON (Mobile-PON)

Siyu Zhou, Xiang Liu, Frank Effenberger, and Jonathan Chao
J. Opt. Commun. Netw. 10(1) A20-A26 (2018)

References

  • View by:
  • |
  • |
  • |

  1. China Mobile, “C-RAN: the road towards green RAN,” White Paper, version 2.5 (2013).
  2. P. Chanclou, A. Pizzinat, F. Le Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. Le Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” Future Network and Mobile Summit IEEE, 2013.
  3. CPRI Specification V7.0, “Common Public Radio Interface (CPRI); Interface Specification,” October 2015.
  4. D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
    [Crossref]
  5. S. H. Kim, H. S. Chung, and S. M. Kim, “Experimental demonstration of CPRI data compression based on partial bit sampling for mobile front-haul link in C-RAN,” Optical Fiber Communication Conference, W1H.5. 2016.
    [Crossref]
  6. M. Xu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “Fast Statistical Estimation in Highly Compressed Digital RoF Systems for Efficient 5G Wireless Signal Delivery,” Optical Fiber Communication Conference, M3E.7. 2017.
    [Crossref]
  7. D. Wake, A. Nkansah, and N. J. Gomes, “Radio Over Fiber Link Design for Next Generation Wireless Systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
    [Crossref]
  8. M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8× 8 MIMO,” Optical Fiber Communication Conference, M2J.3. 2015.
    [Crossref]
  9. X. Liu, H. Zheng, and F. Effenberger, “Bandwidth-Efficient Synchronous Transmission of I/Q Waveforms and Control Words via Frequency Division Multiplexing for Mobile Fronthaul,” Global Communications Conference. IEEE, 2015.
  10. A. Gatto, P. Boffi, L. Combi, P. Parolari, U. Spagnolini, R. Brenot, and M. Martinelli, “LTE-A Mobile Fronthaul Exploiting Pulse-Width Modulation in a RSOA-based WDM PON,” Optical Fiber Communication Conference, W3C.6. 2016.
    [Crossref]
  11. D. Che, F. Yuan, and W. Shieh, “Ultrahigh-Fidelity Mobile Fronthaul Using Analog Angle modulation,” European Conference on Optical Communication, 2016.
  12. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient Mobile Fronthaul via DSP-Based Channel Aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
    [Crossref]
  13. L. Haibo, Q. Yang, M. Luo, R. Hu, P. Jiang, Y. Liu, X. Li, and S. Yu, “Demonstration of Bandwidth Efficient and Low-Complexity Mobile Fronthaul Architecture via CDM-Based Digital Channel Aggregation,” Optical Fiber Communication Conference, TH3A.5, 2017.
    [Crossref]
  14. J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G.-K. Chang, “Delta-Sigma Modulation for Digital Mobile Fronthaul Enabling Carrier Aggregation of 32 4G-LTE / 30 5G-FBMC Signals in a Single-λ 10-Gb/s IM-DD Channel,” Optical Fiber Communication Conference, W1H.2, 2016.
    [Crossref]
  15. C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
    [Crossref]
  16. F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, C. Su, and G.-K. Chang, “Efficient mobile fronthaul serving massive MIMO new radio services using single-IF with Sample-wise TDM for reduced RRH complexity and ultra-low latency,” Optical Fiber Communication Conference, TH3A.4. 2017.
    [Crossref]
  17. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “CPRI-Compatible Efficient Mobile Fronthaul Transmission via Equalized TDMA Achieving 256 Gb/s CPRI-Equivalent Data Rate in a Single 10-GHz-Bandwidth IM-DD Channel,” Optical Fiber Communication Conference, W1H.3. 2016.
  18. China Mobile Research Institute, “White Paper of Next Generation Fronthaul Interface,” White paper v1.0, 2015.
  19. A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
    [Crossref]
  20. L. Cheng, X. Liu, N. Chand, F. Effenberger, and G.-K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and hardware-efficient mobile fronthaul supporting 128× 128 MIMO with 100-MHz OFDM signals,” Optical Fiber Communication Conference, W3C.3. 2016.
    [Crossref]
  21. Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM wireless communications with MATLAB (John Wiley & Sons, 2010).
  22. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient Mobile Fronthaul via DSP-Based Channel Aggregation,” J. Lightwave Technol. 34(6), 1556–1564 (2016).
    [Crossref]

2016 (2)

2015 (1)

2012 (1)

D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
[Crossref]

2010 (1)

Chanclou, P.

Chand, N.

Chang, Q.

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

Che, D.

D. Che, F. Yuan, and W. Shieh, “Ultrahigh-Fidelity Mobile Fronthaul Using Analog Angle modulation,” European Conference on Optical Communication, 2016.

Diallo, T.

Effenberger, F.

Gao, Z.

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

Gomes, N. J.

Hu, X.

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

Huang, X.

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

Liu, X.

MacDonald, M.

D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
[Crossref]

Nkansah, A.

Pastalan, J.

D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
[Crossref]

Pizzinat, A.

Saliou, F.

Samardzija, D.

D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
[Crossref]

Shieh, W.

D. Che, F. Yuan, and W. Shieh, “Ultrahigh-Fidelity Mobile Fronthaul Using Analog Angle modulation,” European Conference on Optical Communication, 2016.

Sun, X.

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

Valenzuela, R.

D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
[Crossref]

Wake, D.

Walker, S.

D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
[Crossref]

Ye, C.

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

Yuan, F.

D. Che, F. Yuan, and W. Shieh, “Ultrahigh-Fidelity Mobile Fronthaul Using Analog Angle modulation,” European Conference on Optical Communication, 2016.

Zeng, H.

Zhang, K.

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

Zheng, H.

X. Liu, H. Zheng, and F. Effenberger, “Bandwidth-Efficient Synchronous Transmission of I/Q Waveforms and Control Words via Frequency Division Multiplexing for Mobile Fronthaul,” Global Communications Conference. IEEE, 2015.

IEEE Trans. Wirel. Commun. (1)

D. Samardzija, J. Pastalan, M. MacDonald, S. Walker, and R. Valenzuela, “Compressed transport of baseband signals in radio access networks,” IEEE Trans. Wirel. Commun. 11(9), 3216–3225 (2012).
[Crossref]

J. Lightwave Technol. (4)

Other (17)

L. Cheng, X. Liu, N. Chand, F. Effenberger, and G.-K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and hardware-efficient mobile fronthaul supporting 128× 128 MIMO with 100-MHz OFDM signals,” Optical Fiber Communication Conference, W3C.3. 2016.
[Crossref]

Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM wireless communications with MATLAB (John Wiley & Sons, 2010).

L. Haibo, Q. Yang, M. Luo, R. Hu, P. Jiang, Y. Liu, X. Li, and S. Yu, “Demonstration of Bandwidth Efficient and Low-Complexity Mobile Fronthaul Architecture via CDM-Based Digital Channel Aggregation,” Optical Fiber Communication Conference, TH3A.5, 2017.
[Crossref]

J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, and G.-K. Chang, “Delta-Sigma Modulation for Digital Mobile Fronthaul Enabling Carrier Aggregation of 32 4G-LTE / 30 5G-FBMC Signals in a Single-λ 10-Gb/s IM-DD Channel,” Optical Fiber Communication Conference, W1H.2, 2016.
[Crossref]

C. Ye, K. Zhang, Q. Chang, Z. Gao, X. Hu, X. Huang, and X. Sun, “A DSP-Assisted Symbol-Cascade Mobile Fronthaul Solution with Large Capacity and Neat RRHs,” European Conference on Optical Communication, 2015.
[Crossref]

F. Lu, M. Xu, L. Cheng, J. Wang, S. Shen, C. Su, and G.-K. Chang, “Efficient mobile fronthaul serving massive MIMO new radio services using single-IF with Sample-wise TDM for reduced RRH complexity and ultra-low latency,” Optical Fiber Communication Conference, TH3A.4. 2017.
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “CPRI-Compatible Efficient Mobile Fronthaul Transmission via Equalized TDMA Achieving 256 Gb/s CPRI-Equivalent Data Rate in a Single 10-GHz-Bandwidth IM-DD Channel,” Optical Fiber Communication Conference, W1H.3. 2016.

China Mobile Research Institute, “White Paper of Next Generation Fronthaul Interface,” White paper v1.0, 2015.

M. Zhu, X. Liu, N. Chand, F. Effenberger, and G. Chang, “High-capacity mobile fronthaul supporting LTE-advanced carrier aggregation and 8× 8 MIMO,” Optical Fiber Communication Conference, M2J.3. 2015.
[Crossref]

X. Liu, H. Zheng, and F. Effenberger, “Bandwidth-Efficient Synchronous Transmission of I/Q Waveforms and Control Words via Frequency Division Multiplexing for Mobile Fronthaul,” Global Communications Conference. IEEE, 2015.

A. Gatto, P. Boffi, L. Combi, P. Parolari, U. Spagnolini, R. Brenot, and M. Martinelli, “LTE-A Mobile Fronthaul Exploiting Pulse-Width Modulation in a RSOA-based WDM PON,” Optical Fiber Communication Conference, W3C.6. 2016.
[Crossref]

D. Che, F. Yuan, and W. Shieh, “Ultrahigh-Fidelity Mobile Fronthaul Using Analog Angle modulation,” European Conference on Optical Communication, 2016.

S. H. Kim, H. S. Chung, and S. M. Kim, “Experimental demonstration of CPRI data compression based on partial bit sampling for mobile front-haul link in C-RAN,” Optical Fiber Communication Conference, W1H.5. 2016.
[Crossref]

M. Xu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “Fast Statistical Estimation in Highly Compressed Digital RoF Systems for Efficient 5G Wireless Signal Delivery,” Optical Fiber Communication Conference, M3E.7. 2017.
[Crossref]

China Mobile, “C-RAN: the road towards green RAN,” White Paper, version 2.5 (2013).

P. Chanclou, A. Pizzinat, F. Le Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. Le Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” Future Network and Mobile Summit IEEE, 2013.

CPRI Specification V7.0, “Common Public Radio Interface (CPRI); Interface Specification,” October 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Arraying of (a) the symbol-wise TDM and (b) the basic sample-wise TDM for 3 AxCs. TS: time slot.
Fig. 2
Fig. 2 Arraying of MIMO-interleaved segment-wise TDM with three 4 × 4 MIMO groups and 5-sample-length segment. Si-j: the sample from AxC-i at sampling instant j; GI: guard interval.
Fig. 3
Fig. 3 (a) MIMO-interleaved arraying in sample-wise TDM, (b) schematic of the received signal. Sij: the sample from jth antenna of MIMO group-i.
Fig. 4
Fig. 4 (a) Intra-MI-intra-SI and Intra-MI-inter-SI in segment-wise TDM with 4 × 4 MIMO-interleaved arraying, Si-j: sample from ith antenna at sampling instant j. (b) Impulse response sequence of a low-pass system.
Fig. 5
Fig. 5 System processing flow and setup. (i) The frequency response and (ii) the time-domain impulse response of the entire system. (iii) The spectrum of the sample-wise TDM signal and the segment-wise TDM signal. AxC: antenna carrier signal; ADC: analog to digital converter; TDM MUX/DEMUX: time division multiplexing/demultiplexing; AWG: arbitrary waveform generator; LD: laser diode; PD: photodetector; OSC: oscilloscope. RF: radio frequency; IF: intermediate frequency; BB: baseband.
Fig. 6
Fig. 6 EVM & TS utilization versus GI length in (a) Sa-TDM scheme and (b) Se-TDM scheme with the aggregation of 20 8 × 8 MIMO groups. (c) EVM of Se-TDM scheme versus segment length. TS: time slot; Sa-TDM: sample-wise TDM; Se-TDM: segment-wise TDM.
Fig. 7
Fig. 7 (a) EVM versus ROP for different segment lengths after 20-km fiber. (b) EVM of the Sa-TDM and the Se-TDM with 15-sample segment length via 20km and BtB transmission. (c) EVM versus the number of aggregated MIMO groups, the segment length for Se-TDM is 15 samples. Sa-TDM: sample-wise TDM; Se-TDM: segment-wise TDM.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

r i ( k ) = j = 1 N h ( i j ) s j ( k ) .
r i ( t ) = j = 1 N h ( i j ) s j ( t ) ,
r = [ h ( 0 ) h ( 1 ) h ( 1 N ) h ( 1 ) h ( 0 ) h ( 1 ) h ( N 1 ) h ( 1 ) h ( 0 ) ] × s = H i n t r a × s ,
R ( ω ) = H M I M O ( ω ) H i n t r a ( ω ) S ( ω ) + N W .
r ' i ( k ) = r i ( k ) + j = 1 N h ( N + i j ) s j ( k 1 ) + j = 1 N h ( N + i j ) s j ( k + 1 ) .
R ' ( ω ) = H M I M O ( ω ) ( H i n t r a ( ω ) + [ h ( N ) h ( N 1 ) h ( 1 ) h ( N + 1 ) h ( N ) h ( N 1 ) h ( 2 N 1 ) h ( N + 1 ) h ( N ) ] e j ω T s + [ h ( N ) h ( N 1 ) h ( 2 N 1 ) h ( N + 1 ) h ( N ) h ( N 1 ) h ( 1 ) h ( N + 1 ) h ( N ) ] e + j ω T s ) S ( ω ) + N W = H M I M O ( ω ) ( H i n t r a ( ω ) + H i n t e r ( ω ) ) S ( ω ) + N W
B W s a m p l e = F s s a m p l e / 2 = f s A x C × M × ( N + N G I ) / 2 N .
B W s e g m e n t = F s s e g m e n t / 2 = f s A x C × M × ( L × N + N ' G I ) / 2 ( L × N ) .

Metrics