Abstract

Wavelength-division multiplexing (WDM) schemes have greatly increased optical transmission capacity, especially when using massively parallel optical frequency combs (OFCs) as carriers. In this paper, we show that linear optical sampling (LOS) is a kind of multiheterodyne process and it can be performed with arbitrary-shaped periodic waveforms. Meanwhile, it can be used for characterizing WDM signals with only a single receiving channel. We successfully demonstrate an observation of 40 WDM channels with 1 THz total bandwidth and total 800 Gbit/s data rate by only using one sampling channel. We show that the adoption of the concept of multiheterodyne detection can improve the performance of LOS technique, and can also greatly simplify multi-channel WDM monitoring systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous WDM signal detection realized by ultrafast field sampling

Keiji Okamoto and Fumihiko Ito
Opt. Express 17(8) 6696-6702 (2009)

Optical signal to noise ratio monitoring using single channel sampling technique

Yi Yu, Banghong Zhang, and Changyuan Yu
Opt. Express 22(6) 6874-6880 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Raybon, B. Guan, A. Adamiecki, P. Winzer, N. Fontaine, S. Chen, P. Papalaikis, R. Delbue, K. Doshi, B. Bhat, A. Blankman, A. Konczykowska, J. Dupuy, and F. Jorge, “160-Gbaud coherent receiver based on 100-GHz bandwidth, 240-GS/s analog-to-digital conversion,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3G.1.
    [Crossref]
  2. A. E. Willner, Z. Pan, and C. Yu, “Optical performance monitoring,” in Optical Fiber Telecommunications VB (Elsevier Publishers, 2008).
  3. P. Pupalaikis and D. Graef, “High bandwidth real-time oscilloscope,” US Patent 7,058,548, June 2006.
  4. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
    [Crossref]
  5. C. Dorrer, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23(1), 178–186 (2005).
    [Crossref]
  6. J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
    [Crossref]
  7. K. Okamoto and F. Ito, “Dual-channel linear optical sampling for simultaneously monitoring ultrafast intensity and phase modulation,” J. Lightwave Technol. 27(12), 2169–2175 (2009).
    [Crossref]
  8. H. Sunnerud, M. Skold, M. Westlund, and P. A. Andrekson, “Characterization of complex optical modulation formats at 100 Gb/s and beyond by coherent optical sampling,” J. Lightwave Technol. 30(24), 3747–3759 (2012).
    [Crossref]
  9. F. Ito, N. Kono, D. Iida, and T. Manabe, “High dynamic range linear optical sampling with coherence recovery for measuring fibre impulse response,” in proceedings of 42th European Conference on Optical Communications (ECOC 2016), paper W.1.B.1.
  10. T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
    [Crossref]
  11. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [Crossref] [PubMed]
  12. K. Okamoto and F. Ito, “Dual-channel linear optical sampling for simultaneously monitoring ultrafast intensity and phase modulation,” J. Lightwave Technol. 27(12), 2169–2175 (2009).
    [Crossref]
  13. K. Okamoto, F. Ito, M. Tsubokawa, Y. Sakamaki, and T. Hashimoto, “Channel-allocation-adaptive WDM signal observation based on sequential ultrafast field sampling,” Opt. Lett. 35(9), 1410–1412 (2010).
    [Crossref] [PubMed]
  14. T. Okamoto, F. Ito, Y. Sakamaki, and T. Hashimoto, “Simultaneous dense differential phase-shift keying wavelength division multiplexing signal quality observation based on sequential ultrafast field sampling,” J. Lightwave Technol. 49, 402 (2013).
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  16. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  17. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
    [Crossref]
  18. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  19. I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
    [Crossref]
  20. J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
    [Crossref]
  21. M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
    [Crossref]
  22. T. Dennis, P. A. Williams, I. Coddington, and N. R. Newbury, “Word-synchronous linear optical sampling of 40 Gb/s QPSK signals,” in proceedings of Optical Fiber Communication Conference (OFC 2009), paper OThH.3.
  23. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).
  24. V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
    [Crossref]
  25. J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
    [Crossref] [PubMed]
  26. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
    [Crossref] [PubMed]
  27. International Telecommunication Union, Telecommunication Standardization Sector of ITU, ITU-T G.694.1, Feb. 2012.

2017 (1)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

2016 (4)

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
[Crossref]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

2015 (1)

2013 (3)

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

T. Okamoto, F. Ito, Y. Sakamaki, and T. Hashimoto, “Simultaneous dense differential phase-shift keying wavelength division multiplexing signal quality observation based on sequential ultrafast field sampling,” J. Lightwave Technol. 49, 402 (2013).

2012 (1)

2011 (1)

2010 (2)

2009 (2)

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

2004 (1)

2003 (1)

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Adamiecki, A. L.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

Alic, N.

Anderkson, P. A.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Andrekson, P. A.

Ataie, V.

Bagnell, M.

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Bramerie, L.

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Buhl, L.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

Bull, J. D.

Coddington, I.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Davila-Rodriguez, J.

Delfyett, P. J.

Dorrer, C.

Dupuy, J.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

Ellis, A. D.

Freude, W.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

Fu, S.

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

Garcia Gunning, F. C.

Gay, M.

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

Gohle, C.

Gomez-Agis, F.

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Hashimoto, T.

T. Okamoto, F. Ito, Y. Sakamaki, and T. Hashimoto, “Simultaneous dense differential phase-shift keying wavelength division multiplexing signal quality observation based on sequential ultrafast field sampling,” J. Lightwave Technol. 49, 402 (2013).

K. Okamoto, F. Ito, M. Tsubokawa, Y. Sakamaki, and T. Hashimoto, “Channel-allocation-adaptive WDM signal observation based on sequential ultrafast field sampling,” Opt. Lett. 35(9), 1410–1412 (2010).
[Crossref] [PubMed]

Healy, T.

Holzwarth, R.

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Ito, F.

Jorge, F.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

Kang, I.

Karpov, M.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Keilmann, F.

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

Kilper, D. C.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Kippenberg, T. J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Konczykowska, A.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

Koos, C.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Kuo, B. P.

Leuthold, J.

Liu, B.

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

Liu, D.

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

Liu, L.

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Myslivets, E.

Newbury, N. R.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Nguyen, T. H.

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

Okamoto, K.

Okamoto, T.

T. Okamoto, F. Ito, Y. Sakamaki, and T. Hashimoto, “Simultaneous dense differential phase-shift keying wavelength division multiplexing signal quality observation based on sequential ultrafast field sampling,” J. Lightwave Technol. 49, 402 (2013).

Pascual, M. D.

Pfeiffer, M. H. P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Radic, S.

Raybon, G.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Raymer, M. G.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Rosenberger, R.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Ryf, R.

Sakamaki, Y.

T. Okamoto, F. Ito, Y. Sakamaki, and T. Hashimoto, “Simultaneous dense differential phase-shift keying wavelength division multiplexing signal quality observation based on sequential ultrafast field sampling,” J. Lightwave Technol. 49, 402 (2013).

K. Okamoto, F. Ito, M. Tsubokawa, Y. Sakamaki, and T. Hashimoto, “Channel-allocation-adaptive WDM signal observation based on sequential ultrafast field sampling,” Opt. Lett. 35(9), 1410–1412 (2010).
[Crossref] [PubMed]

Sentieys, O.

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

Shum, P.

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

Simon, J. C.

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

Skold, M.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

H. Sunnerud, M. Skold, M. Westlund, and P. A. Andrekson, “Characterization of complex optical modulation formats at 100 Gb/s and beyond by coherent optical sampling,” J. Lightwave Technol. 30(24), 3747–3759 (2012).
[Crossref]

Smyth, F.

Song, J.

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

Stuart, H. R.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Sunnerud, H.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

H. Sunnerud, M. Skold, M. Westlund, and P. A. Andrekson, “Characterization of complex optical modulation formats at 100 Gb/s and beyond by coherent optical sampling,” J. Lightwave Technol. 30(24), 3747–3759 (2012).
[Crossref]

Swann, W. C.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Tang, M.

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

Temprana, E.

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Tsubokawa, M.

Vijayan, K.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Westlund, M.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

H. Sunnerud, M. Skold, M. Westlund, and P. A. Andrekson, “Characterization of complex optical modulation formats at 100 Gb/s and beyond by coherent optical sampling,” J. Lightwave Technol. 30(24), 3747–3759 (2012).
[Crossref]

Williams, C.

Winzer, P. J.

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

C. Dorrer, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23(1), 178–186 (2005).
[Crossref]

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

J. Song, S. Fu, B. Liu, M. Tang, P. Shum, and D. Liu, “Impact of Sampling Source Repetition Frequency in Linear Optical Sampling,” IEEE Photonics Technol. Lett. 28(1), 15–18 (2016).
[Crossref]

T. H. Nguyen, F. Gomez-Agis, L. Bramerie, M. Gay, J. C. Simon, and O. Sentieys, “Impact of sampling-source extinction ratio in linear optical sampling,” IEEE Photonics Technol. Lett. 25(7), 663 (2013).
[Crossref]

M. Skold, G. Raybon, A. L. Adamiecki, P. J. Winzer, H. Sunnerud, M. Westlund, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, and P. A. Anderkson, “Quasi-Real-Time Optical Sampling Scheme for High-Speed Signal Acquisition and Processing,” IEEE Photonics Technol. Lett. 25(5), 504–507 (2013).
[Crossref]

J. Lightwave Technol. (7)

V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
[Crossref]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
[Crossref]

K. Okamoto and F. Ito, “Dual-channel linear optical sampling for simultaneously monitoring ultrafast intensity and phase modulation,” J. Lightwave Technol. 27(12), 2169–2175 (2009).
[Crossref]

T. Okamoto, F. Ito, Y. Sakamaki, and T. Hashimoto, “Simultaneous dense differential phase-shift keying wavelength division multiplexing signal quality observation based on sequential ultrafast field sampling,” J. Lightwave Technol. 49, 402 (2013).

K. Okamoto and F. Ito, “Dual-channel linear optical sampling for simultaneously monitoring ultrafast intensity and phase modulation,” J. Lightwave Technol. 27(12), 2169–2175 (2009).
[Crossref]

H. Sunnerud, M. Skold, M. Westlund, and P. A. Andrekson, “Characterization of complex optical modulation formats at 100 Gb/s and beyond by coherent optical sampling,” J. Lightwave Technol. 30(24), 3747–3759 (2012).
[Crossref]

C. Dorrer, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23(1), 178–186 (2005).
[Crossref]

Nat. Photonics (1)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Nature (1)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Other (7)

G. Raybon, B. Guan, A. Adamiecki, P. Winzer, N. Fontaine, S. Chen, P. Papalaikis, R. Delbue, K. Doshi, B. Bhat, A. Blankman, A. Konczykowska, J. Dupuy, and F. Jorge, “160-Gbaud coherent receiver based on 100-GHz bandwidth, 240-GS/s analog-to-digital conversion,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper W3G.1.
[Crossref]

A. E. Willner, Z. Pan, and C. Yu, “Optical performance monitoring,” in Optical Fiber Telecommunications VB (Elsevier Publishers, 2008).

P. Pupalaikis and D. Graef, “High bandwidth real-time oscilloscope,” US Patent 7,058,548, June 2006.

F. Ito, N. Kono, D. Iida, and T. Manabe, “High dynamic range linear optical sampling with coherence recovery for measuring fibre impulse response,” in proceedings of 42th European Conference on Optical Communications (ECOC 2016), paper W.1.B.1.

T. Dennis, P. A. Williams, I. Coddington, and N. R. Newbury, “Word-synchronous linear optical sampling of 40 Gb/s QPSK signals,” in proceedings of Optical Fiber Communication Conference (OFC 2009), paper OThH.3.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).

International Telecommunication Union, Telecommunication Standardization Sector of ITU, ITU-T G.694.1, Feb. 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Principle of operation. (a) Optical sampling (multiheterodyne detection) for signal reconstruction. (b) Down-conversion for WDM channel allocation, where (a) is the close-up of Ch q surrounded by the dotted rectangle.
Fig. 2
Fig. 2 Characterization of a PRBS signal using an arbitrary-shaped sampling signal. (a) Raw sampling results including the carrier frequency. (b) Reconstructed signal from (a) referencing to Eq. (4). (c) RF spectrum of the inteferogram shown in (a). (d) Recovered PRBS signal.
Fig. 3
Fig. 3 Experimental setup of dual-channel signal monitoring system. MLL: mode-locked laser; FL: fiber laser; BPF: optical bandpass filter; MZM: Mach-Zehnder modulator; AWG: arbitrary waveform generator; BPD: balanced photodetector.
Fig. 4
Fig. 4 (a) Optical spectrum of the dual-channel signal. (b) Measured dual-channel signal in electrical domain. (c) Demultiplexed 20 GBaud OOK signal. (d) Demultiplexed 32 GBaud DPSK signal.
Fig. 5
Fig. 5 Experimental results. (a) Measured carrier frequency fluctuations in 250 μs. (b) Demodulated DPSK signal with phase noise cancellation.
Fig. 6
Fig. 6 (a) Schematic of the generation of massively paralleled WDM signal. (b) Optical spectrum of the generated optical carriers. (c) Optical spectrum of the transmitted superchannel. FL: fiber laser; OFCG: optical frequency comb generator; EDFA: erbium-doped fiber amplifier.
Fig. 7
Fig. 7 (a) Mixed of time domain signals of 40 channels. (b) Electrical spectrum of 40 modulated channels. (c) Eye diagrams of six randomly chosen channels.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E Sq ( t )=exp( j2π f Scq t ) k S qk exp[ j( 2πk f Sq t+ φ Sqk ) ] ,
S q ( t )= k S qk exp[ j( 2πk f Sq t+ φ Sqk ) ] .
E Lq ( t )= m L qm exp{ j[ ( 2π f Lcq t+2πm f L t )+ φ Lqm ] } ,
i q (t)= | E Lq (τ)+ E Sq (τ) | 2 =2Re{ exp[ j2π( f Scq f Lcq )t ] r L qr S qr exp[ j( 2πrΔft+ φ Sqr φ Lqr ) ] }+[ ... ],
S q ( t )= r L qr S qr exp[ j( 2πkΔft+ φ Sqk φ Lqr ) ] .
φ DPSK ( t )= φ Sig ( t ) φ Sig ( t+τ )

Metrics