Abstract

A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-stage optical FDM of 12-channel 10-Gb/s data with 20-GHz exact channel spacing using fiber cross-phase modulation with optical subcarrier signals

Tomoyuki Kato, Ryo Okabe, Reinhold Ludwig, Robert Elschner, Colja Schubert, and Shigeki Watanabe
Opt. Express 19(26) B295-B300 (2011)

Secure free-space optical communication system based on data fragmentation multipath transmission technology

Qingchao Huang, Dachang Liu, Yinfang Chen, Yuehui Wang, Jun Tan, Wei Chen, Jianguo Liu, and Ninghua Zhu
Opt. Express 26(10) 13536-13542 (2018)

Performance of multi-hop parallel free-space optical communication over gamma–gamma fading channel with pointing errors

Zhengguang Gao, Hongzhan Liu, Xiaoping Ma, and Wei Lu
Appl. Opt. 55(32) 9178-9184 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, Y. Yao, Y. Sun, and X. Zhao, “Analysis of average capacity for free-space optical links with pointing errors over gamma-gamma turbulence channels,” Chin. Opt. Lett. 8(6), 537–540 (2010).
    [Crossref]
  2. T. Mao, Q. Chen, W. He, Y. Zhou, H. Dai, and G. Gu, “Free-space optical communication using patterned modulation and bucket detection,” Chin. Opt. Lett. 14(11), 110607 (2016).
    [Crossref]
  3. J. Yin, H. Liu, R. Huang, Z. Gao, and Z. Wei, “Performance of a PPM hard decision-based ARQ-FSO system in a weak turbulence channel,” Chin. Opt. Lett. 15(6), 060101 (2017).
    [Crossref]
  4. M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
    [Crossref]
  5. F. Liu, J. Sun, X. Ma, P. Hou, G. Cai, Z. Sun, Z. Lu, and L. Liu, “New coherent laser communication detection scheme based on channel-switching method,” Appl. Opt. 54(10), 2738–2746 (2015).
    [Crossref] [PubMed]
  6. D. Cornwell, “Space-based laser communications break threshold,” Opt. Photonics News 27(5), 24–31 (2016).
    [Crossref]
  7. D. J. Israel, B. L. Edwards, and J. W. Staren, “Laser communications relay demonstration (LCRD) update and the path towards optical relay operations,” in Proceedings of IEEE Aerospace Conference (IEEE, 2017), pp. 1–6.
    [Crossref]
  8. Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
    [Crossref]
  9. X. Tang, Z. Wang, Z. Xu, Z. Xu, and Z. Ghassemlooy, “Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection,” J. Lightwave Technol. 32(15), 2597–2604 (2014).
    [Crossref]
  10. W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
    [Crossref]
  11. Z. Qu and I. B. Djordjevic, “500 Gb/s free-space optical transmission over strong atmospheric turbulence channels,” Opt. Lett. 41(14), 3285–3288 (2016).
    [Crossref] [PubMed]
  12. P. Krishnan and D. S. Kumar, “Performance analysis of free-space optical systems employing binary polarization shift keying signaling over gamma-gamma channel with pointing errors,” Opt. Eng. 53(7), 076105 (2014).
    [Crossref]
  13. H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9(2), 161–171 (2017).
    [Crossref]
  14. M. Abaza, R. Mesleh, A. Mansour, and E. H. M. Aggoune, “Diversity techniques for a free-space optical communication system in correlated log-normal channels,” Opt. Eng. 53(1), 016102 (2014).
    [Crossref]
  15. C. Kundu and R. Bose, “Joint optimal power allocation and relay location for decode-and-forward multi-hop relaying over log-normal channel,” IET Commun. 9(18), 2197–2207 (2015).
    [Crossref]
  16. D. Shah, D. Kothari, and A. Ghosh, “Performance of free-space optical link with wavelength diversity over exponentiated Weibull channel,” Opt. Eng. 55(11), 116112 (2016).
    [Crossref]
  17. R. Boluda-Ruiz, A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and S. Hranilovic, “Outage performance of exponentiated Weibull FSO links under generalized pointing errors,” J. Lightwave Technol. 35(9), 1605–1613 (2017).
    [Crossref]
  18. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  19. A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M. S. Alouini, “Effect of RF interference on the security-reliability trade-off analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
    [Crossref]
  20. J. Park, E. Lee, C. B. Chae, and G. Yoon, “Outage probability analysis of a coherent FSO amplify-and-forward relaying system,” IEEE Photonics Technol. Lett. 27(11), 1204–1207 (2015).
    [Crossref]
  21. R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Ergodic capacity analysis of decode-and-forward relay-assisted FSO systems over Alpha–Mu fading channels considering pointing errors,” IEEE Photonics J. 8(1), 7900611 (2016).
    [Crossref]
  22. T. Cao, P. Wang, L. Guo, B. Yang, J. Li, and Y. Yang, “Average bit error rate of multi-hop parallel decode-and-forward-based FSO cooperative system with the max–min criterion under the gamma–gamma distribution,” Chin. Opt. Lett. 13(8), 080101 (2015).
    [Crossref]
  23. N. Varshney and P. Puri, “Performance analysis of decode-and-forward based mixed MIMO-RF/FSO cooperative systems with source mobility and imperfect CSI,” J. Lightwave Technol. 35(11), 2070–2077 (2017).
    [Crossref]
  24. K. Balskus, S. Schilt, V. J. Wittwer, P. Brochard, T. Ploetzing, N. Jornod, R. A. McCracken, Z. Zhang, A. Bartels, D. T. Reid, and T. Südmeyer, “Frequency comb metrology with an optical parametric oscillator,” Opt. Express 24(8), 8370–8381 (2016).
    [Crossref] [PubMed]
  25. J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. G. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
    [Crossref] [PubMed]
  26. M. Vainio and J. Karhu, “Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy,” Opt. Express 25(4), 4190–4200 (2017).
    [Crossref] [PubMed]
  27. J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
    [Crossref]
  28. X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J. J. V. Olmos, R. Llorente, and I. T. Monroy, “Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems,” J. Opt. Commun. Netw. 6(1), 1–7 (2014).
    [Crossref]
  29. Z. Zhao, Y. Liu, Z. Zhang, X. Chen, J. Liu, and N. Zhu, “1.5 μm, 8×12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application,” Chin. Opt. Lett. 14(12), 120603 (2016).
    [Crossref]
  30. H. C. Cheng and C. P. Lee, “Investigation of quantum dot passively mode-locked lasers with excited-state transition,” Opt. Express 21(22), 26113–26122 (2013).
    [Crossref] [PubMed]
  31. W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
    [Crossref]
  32. Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
    [Crossref]
  33. D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
    [Crossref]

2017 (9)

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
[Crossref]

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9(2), 161–171 (2017).
[Crossref]

M. Vainio and J. Karhu, “Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy,” Opt. Express 25(4), 4190–4200 (2017).
[Crossref] [PubMed]

J. Yin, H. Liu, R. Huang, Z. Gao, and Z. Wei, “Performance of a PPM hard decision-based ARQ-FSO system in a weak turbulence channel,” Chin. Opt. Lett. 15(6), 060101 (2017).
[Crossref]

A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M. S. Alouini, “Effect of RF interference on the security-reliability trade-off analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightwave Technol. 35(9), 1490–1505 (2017).
[Crossref]

R. Boluda-Ruiz, A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and S. Hranilovic, “Outage performance of exponentiated Weibull FSO links under generalized pointing errors,” J. Lightwave Technol. 35(9), 1605–1613 (2017).
[Crossref]

N. Varshney and P. Puri, “Performance analysis of decode-and-forward based mixed MIMO-RF/FSO cooperative systems with source mobility and imperfect CSI,” J. Lightwave Technol. 35(11), 2070–2077 (2017).
[Crossref]

2016 (10)

K. Balskus, S. Schilt, V. J. Wittwer, P. Brochard, T. Ploetzing, N. Jornod, R. A. McCracken, Z. Zhang, A. Bartels, D. T. Reid, and T. Südmeyer, “Frequency comb metrology with an optical parametric oscillator,” Opt. Express 24(8), 8370–8381 (2016).
[Crossref] [PubMed]

Z. Qu and I. B. Djordjevic, “500 Gb/s free-space optical transmission over strong atmospheric turbulence channels,” Opt. Lett. 41(14), 3285–3288 (2016).
[Crossref] [PubMed]

J. N. Kemal, J. Pfeifle, P. Marin-Palomo, M. D. G. Pascual, S. Wolf, F. Smyth, W. Freude, and C. Koos, “Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator,” Opt. Express 24(22), 25432–25445 (2016).
[Crossref] [PubMed]

T. Mao, Q. Chen, W. He, Y. Zhou, H. Dai, and G. Gu, “Free-space optical communication using patterned modulation and bucket detection,” Chin. Opt. Lett. 14(11), 110607 (2016).
[Crossref]

Z. Zhao, Y. Liu, Z. Zhang, X. Chen, J. Liu, and N. Zhu, “1.5 μm, 8×12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application,” Chin. Opt. Lett. 14(12), 120603 (2016).
[Crossref]

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
[Crossref]

D. Cornwell, “Space-based laser communications break threshold,” Opt. Photonics News 27(5), 24–31 (2016).
[Crossref]

D. Shah, D. Kothari, and A. Ghosh, “Performance of free-space optical link with wavelength diversity over exponentiated Weibull channel,” Opt. Eng. 55(11), 116112 (2016).
[Crossref]

R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Ergodic capacity analysis of decode-and-forward relay-assisted FSO systems over Alpha–Mu fading channels considering pointing errors,” IEEE Photonics J. 8(1), 7900611 (2016).
[Crossref]

2015 (5)

J. Park, E. Lee, C. B. Chae, and G. Yoon, “Outage probability analysis of a coherent FSO amplify-and-forward relaying system,” IEEE Photonics Technol. Lett. 27(11), 1204–1207 (2015).
[Crossref]

M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
[Crossref]

C. Kundu and R. Bose, “Joint optimal power allocation and relay location for decode-and-forward multi-hop relaying over log-normal channel,” IET Commun. 9(18), 2197–2207 (2015).
[Crossref]

F. Liu, J. Sun, X. Ma, P. Hou, G. Cai, Z. Sun, Z. Lu, and L. Liu, “New coherent laser communication detection scheme based on channel-switching method,” Appl. Opt. 54(10), 2738–2746 (2015).
[Crossref] [PubMed]

T. Cao, P. Wang, L. Guo, B. Yang, J. Li, and Y. Yang, “Average bit error rate of multi-hop parallel decode-and-forward-based FSO cooperative system with the max–min criterion under the gamma–gamma distribution,” Chin. Opt. Lett. 13(8), 080101 (2015).
[Crossref]

2014 (5)

X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J. J. V. Olmos, R. Llorente, and I. T. Monroy, “Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems,” J. Opt. Commun. Netw. 6(1), 1–7 (2014).
[Crossref]

X. Tang, Z. Wang, Z. Xu, Z. Xu, and Z. Ghassemlooy, “Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection,” J. Lightwave Technol. 32(15), 2597–2604 (2014).
[Crossref]

M. Abaza, R. Mesleh, A. Mansour, and E. H. M. Aggoune, “Diversity techniques for a free-space optical communication system in correlated log-normal channels,” Opt. Eng. 53(1), 016102 (2014).
[Crossref]

P. Krishnan and D. S. Kumar, “Performance analysis of free-space optical systems employing binary polarization shift keying signaling over gamma-gamma channel with pointing errors,” Opt. Eng. 53(7), 076105 (2014).
[Crossref]

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

2013 (1)

2010 (1)

Abaza, M.

M. Abaza, R. Mesleh, A. Mansour, and E. H. M. Aggoune, “Diversity techniques for a free-space optical communication system in correlated log-normal channels,” Opt. Eng. 53(1), 016102 (2014).
[Crossref]

Aggoune, E. H. M.

M. Abaza, R. Mesleh, A. Mansour, and E. H. M. Aggoune, “Diversity techniques for a free-space optical communication system in correlated log-normal channels,” Opt. Eng. 53(1), 016102 (2014).
[Crossref]

Alouini, M. S.

Balskus, K.

Bartels, A.

Beltrán, M.

Boluda-Ruiz, R.

R. Boluda-Ruiz, A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and S. Hranilovic, “Outage performance of exponentiated Weibull FSO links under generalized pointing errors,” J. Lightwave Technol. 35(9), 1605–1613 (2017).
[Crossref]

R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Ergodic capacity analysis of decode-and-forward relay-assisted FSO systems over Alpha–Mu fading channels considering pointing errors,” IEEE Photonics J. 8(1), 7900611 (2016).
[Crossref]

Bose, R.

C. Kundu and R. Bose, “Joint optimal power allocation and relay location for decode-and-forward multi-hop relaying over log-normal channel,” IET Commun. 9(18), 2197–2207 (2015).
[Crossref]

Brochard, P.

Cai, G.

Cao, T.

Castillo-Vazquez, B.

Castillo-Vazquez, C.

Castillo-Vázquez, B.

R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Ergodic capacity analysis of decode-and-forward relay-assisted FSO systems over Alpha–Mu fading channels considering pointing errors,” IEEE Photonics J. 8(1), 7900611 (2016).
[Crossref]

Castillo-Vázquez, C.

R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Ergodic capacity analysis of decode-and-forward relay-assisted FSO systems over Alpha–Mu fading channels considering pointing errors,” IEEE Photonics J. 8(1), 7900611 (2016).
[Crossref]

Chae, C. B.

J. Park, E. Lee, C. B. Chae, and G. Yoon, “Outage probability analysis of a coherent FSO amplify-and-forward relaying system,” IEEE Photonics Technol. Lett. 27(11), 1204–1207 (2015).
[Crossref]

Chen, Q.

Chen, W.

Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
[Crossref]

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Chen, X.

Cheng, H. C.

Cornwell, D.

D. Cornwell, “Space-based laser communications break threshold,” Opt. Photonics News 27(5), 24–31 (2016).
[Crossref]

Dai, H.

Djordjevic, I. B.

Edwards, B. L.

D. J. Israel, B. L. Edwards, and J. W. Staren, “Laser communications relay demonstration (LCRD) update and the path towards optical relay operations,” in Proceedings of IEEE Aerospace Conference (IEEE, 2017), pp. 1–6.
[Crossref]

El-Malek, A. H. A.

Ferraro, M. S.

W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
[Crossref]

Freude, W.

Gao, Z.

Garcia-Zambrana, A.

García-Zambrana, A.

R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Ergodic capacity analysis of decode-and-forward relay-assisted FSO systems over Alpha–Mu fading channels considering pointing errors,” IEEE Photonics J. 8(1), 7900611 (2016).
[Crossref]

Garrido-Balsells, J. M.

Ghassemlooy, Z.

Ghosh, A.

D. Shah, D. Kothari, and A. Ghosh, “Performance of free-space optical link with wavelength diversity over exponentiated Weibull channel,” Opt. Eng. 55(11), 116112 (2016).
[Crossref]

Gu, G.

Guo, J.

Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
[Crossref]

Guo, L.

He, P.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

He, W.

Hou, P.

Hranilovic, S.

Huang, M.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

Huang, R.

Huang, Z.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

Israel, D. J.

D. J. Israel, B. L. Edwards, and J. W. Staren, “Laser communications relay demonstration (LCRD) update and the path towards optical relay operations,” in Proceedings of IEEE Aerospace Conference (IEEE, 2017), pp. 1–6.
[Crossref]

Ji, Y.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

Jornod, N.

Karhu, J.

Kemal, J. N.

Khallaf, H. S.

Koos, C.

Kothari, D.

D. Shah, D. Kothari, and A. Ghosh, “Performance of free-space optical link with wavelength diversity over exponentiated Weibull channel,” Opt. Eng. 55(11), 116112 (2016).
[Crossref]

Krishnan, P.

P. Krishnan and D. S. Kumar, “Performance analysis of free-space optical systems employing binary polarization shift keying signaling over gamma-gamma channel with pointing errors,” Opt. Eng. 53(7), 076105 (2014).
[Crossref]

Kumar, D. S.

P. Krishnan and D. S. Kumar, “Performance analysis of free-space optical systems employing binary polarization shift keying signaling over gamma-gamma channel with pointing errors,” Opt. Eng. 53(7), 076105 (2014).
[Crossref]

Kundu, C.

C. Kundu and R. Bose, “Joint optimal power allocation and relay location for decode-and-forward multi-hop relaying over log-normal channel,” IET Commun. 9(18), 2197–2207 (2015).
[Crossref]

Lee, C. P.

Lee, E.

J. Park, E. Lee, C. B. Chae, and G. Yoon, “Outage probability analysis of a coherent FSO amplify-and-forward relaying system,” IEEE Photonics Technol. Lett. 27(11), 1204–1207 (2015).
[Crossref]

Li, J.

T. Cao, P. Wang, L. Guo, B. Yang, J. Li, and Y. Yang, “Average bit error rate of multi-hop parallel decode-and-forward-based FSO cooperative system with the max–min criterion under the gamma–gamma distribution,” Chin. Opt. Lett. 13(8), 080101 (2015).
[Crossref]

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

Li, M.

M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
[Crossref]

Li, W.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

Lin, J.

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

Lin, T.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

Liu, C.

Liu, D.

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

Liu, F.

Liu, H.

Liu, J.

Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
[Crossref]

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

Z. Zhao, Y. Liu, Z. Zhang, X. Chen, J. Liu, and N. Zhu, “1.5 μm, 8×12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application,” Chin. Opt. Lett. 14(12), 120603 (2016).
[Crossref]

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Liu, L.

Liu, Y.

Llorente, R.

Lu, Z.

Ma, J.

M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
[Crossref]

Ma, X.

Mahon, R.

W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
[Crossref]

Mansour, A.

M. Abaza, R. Mesleh, A. Mansour, and E. H. M. Aggoune, “Diversity techniques for a free-space optical communication system in correlated log-normal channels,” Opt. Eng. 53(1), 016102 (2014).
[Crossref]

Mao, T.

Marin-Palomo, P.

McCracken, R. A.

Mei, H.

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

Mesleh, R.

M. Abaza, R. Mesleh, A. Mansour, and E. H. M. Aggoune, “Diversity techniques for a free-space optical communication system in correlated log-normal channels,” Opt. Eng. 53(1), 016102 (2014).
[Crossref]

Monroy, I. T.

Moore, C. I.

W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
[Crossref]

Murphy, J. L.

W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
[Crossref]

Olmos, J. J. V.

Pang, X.

Park, J.

J. Park, E. Lee, C. B. Chae, and G. Yoon, “Outage probability analysis of a coherent FSO amplify-and-forward relaying system,” IEEE Photonics Technol. Lett. 27(11), 1204–1207 (2015).
[Crossref]

Pascual, M. D. G.

Pellicer, E.

Pfeifle, J.

Ploetzing, T.

Puri, P.

Qu, Z.

Rabinovich, W. S.

W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
[Crossref]

Reid, D. T.

Salhab, A. M.

Sampei, S.

Sánchez, J.

Schilt, S.

Shah, D.

D. Shah, D. Kothari, and A. Ghosh, “Performance of free-space optical link with wavelength diversity over exponentiated Weibull channel,” Opt. Eng. 55(11), 116112 (2016).
[Crossref]

Shalaby, H. M. H.

Smyth, F.

Staren, J. W.

D. J. Israel, B. L. Edwards, and J. W. Staren, “Laser communications relay demonstration (LCRD) update and the path towards optical relay operations,” in Proceedings of IEEE Aerospace Conference (IEEE, 2017), pp. 1–6.
[Crossref]

Südmeyer, T.

Sun, J.

Sun, L.

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

Sun, W.

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Sun, Y.

Sun, Z.

Tan, J.

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

Tan, L.

M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
[Crossref]

Tang, X.

X. Tang, Z. Wang, Z. Xu, Z. Xu, and Z. Ghassemlooy, “Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection,” J. Lightwave Technol. 32(15), 2597–2604 (2014).
[Crossref]

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

Tong, Y.

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Vainio, M.

Varshney, N.

Wang, P.

Wang, Q.

Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
[Crossref]

Wang, S.

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Wang, W.

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Wang, Z.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

X. Tang, Z. Wang, Z. Xu, Z. Xu, and Z. Ghassemlooy, “Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection,” J. Lightwave Technol. 32(15), 2597–2604 (2014).
[Crossref]

Wei, Z.

Wittwer, V. J.

Wolf, S.

Xi, L.

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

Xu, Z.

Yang, B.

Yang, Q.

M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
[Crossref]

Yang, Y.

Yao, Y.

Yin, J.

Yoon, G.

J. Park, E. Lee, C. B. Chae, and G. Yoon, “Outage probability analysis of a coherent FSO amplify-and-forward relaying system,” IEEE Photonics Technol. Lett. 27(11), 1204–1207 (2015).
[Crossref]

Yu, L.

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Yu, S.

M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
[Crossref]

Yuan, H.

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Zhang, X.

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

Zhang, Z.

Zhao, X.

Zhao, Z.

Zhong, X.

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Zhou, Y.

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

T. Mao, Q. Chen, W. He, Y. Zhou, H. Dai, and G. Gu, “Free-space optical communication using patterned modulation and bucket detection,” Chin. Opt. Lett. 14(11), 110607 (2016).
[Crossref]

Zhu, N.

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
[Crossref]

Z. Zhao, Y. Liu, Z. Zhang, X. Chen, J. Liu, and N. Zhu, “1.5 μm, 8×12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application,” Chin. Opt. Lett. 14(12), 120603 (2016).
[Crossref]

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Zummo, S. A.

Appl. Opt. (1)

Chin. J. Lasers (1)

Q. Wang, J. Guo, W. Chen, J. Liu, and N. Zhu, “Widely tunable distributed feedback semiconductor lasers with constant power and narrow linewidth,” Chin. J. Lasers 44(1), 0101004 (2017).
[Crossref]

Chin. Opt. Lett. (5)

IEEE Photonics J. (2)

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 7902410 (2017).
[Crossref]

R. Boluda-Ruiz, A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, “Ergodic capacity analysis of decode-and-forward relay-assisted FSO systems over Alpha–Mu fading channels considering pointing errors,” IEEE Photonics J. 8(1), 7900611 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Park, E. Lee, C. B. Chae, and G. Yoon, “Outage probability analysis of a coherent FSO amplify-and-forward relaying system,” IEEE Photonics Technol. Lett. 27(11), 1204–1207 (2015).
[Crossref]

IET Commun. (1)

C. Kundu and R. Bose, “Joint optimal power allocation and relay location for decode-and-forward multi-hop relaying over log-normal channel,” IET Commun. 9(18), 2197–2207 (2015).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (2)

Opt. Commun. (2)

M. Li, L. Tan, Q. Yang, J. Ma, and S. Yu, “Effect of partially coherent laser source on the performance of fiber-coupling DPSK receiver for optical communication,” Opt. Commun. 350, 135–143 (2015).
[Crossref]

W. Sun, S. Wang, X. Zhong, J. Liu, W. Wang, Y. Tong, W. Chen, H. Yuan, L. Yu, and N. Zhu, “Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters,” Opt. Commun. 373, 59–64 (2016).
[Crossref]

Opt. Eng. (6)

D. Liu, Z. Wang, J. Liu, J. Tan, H. Mei, Y. Zhou, and N. Zhu, “Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels,” Opt. Eng. 56(10), 106111 (2017).
[Crossref]

J. Lin, L. Xi, J. Li, J. Li, X. Tang, L. Sun, and X. Zhang, “High-quality frequency-locked optical frequency comb source for terabits optical communication system,” Opt. Eng. 53(12), 122608 (2014).
[Crossref]

P. Krishnan and D. S. Kumar, “Performance analysis of free-space optical systems employing binary polarization shift keying signaling over gamma-gamma channel with pointing errors,” Opt. Eng. 53(7), 076105 (2014).
[Crossref]

W. S. Rabinovich, R. Mahon, M. S. Ferraro, J. L. Murphy, and C. I. Moore, “Scintillation recording and playback in free-space optical links,” Opt. Eng. 55(11), 111613 (2016).
[Crossref]

M. Abaza, R. Mesleh, A. Mansour, and E. H. M. Aggoune, “Diversity techniques for a free-space optical communication system in correlated log-normal channels,” Opt. Eng. 53(1), 016102 (2014).
[Crossref]

D. Shah, D. Kothari, and A. Ghosh, “Performance of free-space optical link with wavelength diversity over exponentiated Weibull channel,” Opt. Eng. 55(11), 116112 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Photonics News (1)

D. Cornwell, “Space-based laser communications break threshold,” Opt. Photonics News 27(5), 24–31 (2016).
[Crossref]

Other (2)

D. J. Israel, B. L. Edwards, and J. W. Staren, “Laser communications relay demonstration (LCRD) update and the path towards optical relay operations,” in Proceedings of IEEE Aerospace Conference (IEEE, 2017), pp. 1–6.
[Crossref]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The stability of output power of OFC for 3600 s and (b) the photograph of OFC module with the frequency interval of 100 GHz.
Fig. 2
Fig. 2 The spectrogram for the 100 GHz repetition rate OFC when the temperature is 25 °C and the current is 86 mA with the span of 20 nm in (a) and the span of 6 nm in (b).
Fig. 3
Fig. 3 The experimental system diagram and architecture of (a) transmitter, (b) forwarding relay and (c) receiver. OFC: Optical Frequency Comb; IM: Intensity Modulator; PPG: Pulse Pattern Generator; ATP: Acquisition, Pointing and Tracking; WDM: Wavelength Division Multiplexer; PD: Photo-detector; DSA: Digital Serial Analyzer; EDFA: Erbium-Doped Fiber Amplifier.
Fig. 4
Fig. 4 The BERs, eye diagrams of four channels with 12.5 Gb/s for 30 min and the wavelengths of four channels.
Fig. 5
Fig. 5 The BERs and eye diagrams of one hop FSO communication with different traffic rate based on OFC module.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E (t) = n A ( tnτ ) ×exp{ i[ w c ( tnτ )+nΔθ ] }
H ( w ) = n exp[ in( Δθwτ ) ] H ( w w c ) '
f FC =n f rep +ϕ

Metrics