Abstract

We report a liquid lens based optical see-through head mounted display that can simultaneously display both a maxwellian view and a hologram. Holograms are reconstructed by an angular spectrum layer based synthesis method. A hologram and Maxwellian view are simultaneously displayed by focusing the liquid lens from 0 D to 20 D with 60 Hz. The hologram is reconstructed at a position 1.5 m from the eye, and it is confirmed that the Maxwellian view is clear, even if the focus of the eye changes from 50 cm to 1.7 m. In the proposed system, the liquid lens acts as a low-pass filter. Since the PSNR is about 23 dB in the currently used 10 mm diameter liquid lens, the image quality is not adequate. However, we successfully verify the feasibility of our proposed system. In addition, if a large diameter liquid lens of 30 mm or more is applied, excellent image quality of 30 dB or more can be realized.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display

Jin Su Lee, Yoo Kwang Kim, Mu Young Lee, and Yong Hyub Won
Opt. Express 27(2) 689-701 (2019)

A 3D integral imaging optical see-through head-mounted display

Hong Hua and Bahram Javidi
Opt. Express 22(11) 13484-13491 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
    [Crossref] [PubMed]
  2. S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
    [Crossref]
  3. S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, “Evaluation of the monocular depth cue in 3D displays,” Opt. Express 16(26), 21415–21422 (2008).
    [Crossref] [PubMed]
  4. S. Park, J. Roh, S. Kim, J. Park, H. Kang, J. Hahn, Y. Jeon, S. Park, and H. Kim, “Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator,” Opt. Express 25(4), 3469–3480 (2017).
    [Crossref] [PubMed]
  5. Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
    [Crossref] [PubMed]
  6. Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21(10), 12068–12076 (2013).
    [Crossref] [PubMed]
  7. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  8. Y. Mori, T. Fukuoka, and T. Nomura, “Speckle reduction in holographic projection by random pixel separation with time multiplexing,” Appl. Opt. 53(35), 8182–8188 (2014).
    [Crossref] [PubMed]
  9. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
    [Crossref] [PubMed]
  10. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range,” Opt. Express 22(14), 17590–17599 (2014).
    [Crossref] [PubMed]
  11. J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl. Opt. 51(16), 3294–3304 (2012).
    [Crossref] [PubMed]
  12. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
    [Crossref] [PubMed]
  13. D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
    [Crossref] [PubMed]
  14. J. L. Martinez, E. J. Fernandez, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
    [Crossref] [PubMed]
  15. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref] [PubMed]
  16. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [Crossref] [PubMed]
  17. G. Kramida, “Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
    [Crossref] [PubMed]
  18. M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
    [Crossref]
  19. H. Urey, S. Holmstrom, U. Baran, K. Aksit, M. K. Hedili, and O. Eides, “MEMS scanners and emerging 3D and interactive Augmented Reality display applications,” in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013), pp. 2485–2488.
    [Crossref]
  20. D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
    [Crossref]
  21. F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).
  22. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
    [Crossref]
  23. R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
    [Crossref]
  24. R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
    [Crossref] [PubMed]
  25. H. Wei, G. Gong, and N. Li, “Improved look-up table method of computer-generated holograms,” Appl. Opt. 55(32), 9255–9264 (2016).
    [Crossref] [PubMed]
  26. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref] [PubMed]
  27. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref] [PubMed]
  28. H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
    [Crossref] [PubMed]
  29. K. Matsushima and T. Shimobaba, “Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields,” Opt. Express 17(22), 19662–19673 (2009).
    [Crossref] [PubMed]
  30. T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
    [Crossref] [PubMed]
  31. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24(12), 13334–13342 (2016).
    [Crossref] [PubMed]
  32. N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
    [Crossref] [PubMed]
  33. P. Zhao, Ç. Ataman, and H. Zappe, “Gravity-immune liquid-filled tunable lens with reduced spherical aberration,” Appl. Opt. 55(28), 7816–7823 (2016).
    [Crossref] [PubMed]

2017 (8)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
[Crossref] [PubMed]

S. Park, J. Roh, S. Kim, J. Park, H. Kang, J. Hahn, Y. Jeon, S. Park, and H. Kim, “Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator,” Opt. Express 25(4), 3469–3480 (2017).
[Crossref] [PubMed]

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
[Crossref] [PubMed]

H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
[Crossref] [PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

J. L. Martinez, E. J. Fernandez, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (2)

2014 (3)

2013 (2)

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21(10), 12068–12076 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
[Crossref] [PubMed]

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

2010 (2)

2009 (4)

2008 (1)

2005 (1)

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

1957 (1)

F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).

Arai, D.

Artal, P.

Asundi, A. K.

Ataman, Ç.

Banerjee, A.

Becker, M. F.

Bernet, S.

Bertolotti, J.

Campbell, F. W.

F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).

Cao, L.

Dong, J. W.

Duan, X.

Endo, Y.

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref] [PubMed]

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Fatemi, F. K.

Fernandez, E. J.

Fukuoka, T.

Fütterer, G.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

Gao, Q.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Golan, L.

Gong, G.

Goorden, S. A.

Gritsai, Y.

Hahn, J.

Han, J.

Hasan, N.

Häussler, R.

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Hirayama, R.

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref] [PubMed]

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Hiyama, D.

Ito, T.

Jeon, Y.

Jesacher, A.

Jiang, S.

Jin, G.

Kakue, T.

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref] [PubMed]

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Kang, H.

Kim, D. W.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, “Evaluation of the monocular depth cue in 3D displays,” Opt. Express 16(26), 21415–21422 (2008).
[Crossref] [PubMed]

Kim, H.

Kim, S.

Kim, S. K.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, “Evaluation of the monocular depth cue in 3D displays,” Opt. Express 16(26), 21415–21422 (2008).
[Crossref] [PubMed]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Kong, D.

Kramida, G.

G. Kramida, “Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref] [PubMed]

Kwon, Y. M.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, “Evaluation of the monocular depth cue in 3D displays,” Opt. Express 16(26), 21415–21422 (2008).
[Crossref] [PubMed]

Leister, N.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Li, N.

Li, X.

Liang, J.

Liu, J.

Liu, P.

Liu, Y. Z.

Lukowicz, P.

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Martinez, J. L.

Mastrangelo, C. H.

Masuda, N.

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref] [PubMed]

Matsushima, K.

Missbach, R.

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Mori, Y.

Mosk, A. P.

Murano, K.

Nakahara, S.

Nakayama, H.

Nomura, T.

Oikawa, M.

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Okada, N.

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Pang, X. N.

Park, J.

Park, Q. H.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

Park, S.

Prieto, P. M.

Reichelt, S.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Ritsch-Marte, M.

Roh, J.

Sahm, H.

Schwerdtner, A.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Shimobaba, T.

Shoham, S.

Son, J. Y.

Stock, M.

Stolle, H.

Takaki, Y.

Tröster, G.

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Valyukh, S.

Waldkirch, M.

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Wei, H.

Wu, S. Y.

Yamanashi, H.

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Yokouchi, M.

Yu, Y.

Zappe, H.

Zeng, Z.

Zhang, H.

Zhao, P.

Zhao, T.

Zhao, Y.

Zheng, H.

Zschau, E.

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

ACM Trans. Graph. (1)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Appl. Opt. (8)

H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
[Crossref] [PubMed]

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

H. Wei, G. Gong, and N. Li, “Improved look-up table method of computer-generated holograms,” Appl. Opt. 55(32), 9255–9264 (2016).
[Crossref] [PubMed]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[Crossref] [PubMed]

P. Zhao, Ç. Ataman, and H. Zappe, “Gravity-immune liquid-filled tunable lens with reduced spherical aberration,” Appl. Opt. 55(28), 7816–7823 (2016).
[Crossref] [PubMed]

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
[Crossref] [PubMed]

Y. Mori, T. Fukuoka, and T. Nomura, “Speckle reduction in holographic projection by random pixel separation with time multiplexing,” Appl. Opt. 53(35), 8182–8188 (2014).
[Crossref] [PubMed]

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl. Opt. 51(16), 3294–3304 (2012).
[Crossref] [PubMed]

IEEE Trans. Vis. Comput. Graph. (1)

G. Kramida, “Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref] [PubMed]

J. Mod. Opt. (1)

F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).

Opt. Commun. (1)

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Opt. Eng. (1)

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

Opt. Express (16)

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
[Crossref] [PubMed]

D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express 23(2), 1740–1747 (2015).
[Crossref] [PubMed]

J. L. Martinez, E. J. Fernandez, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref] [PubMed]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref] [PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range,” Opt. Express 22(14), 17590–17599 (2014).
[Crossref] [PubMed]

Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21(10), 12068–12076 (2013).
[Crossref] [PubMed]

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
[Crossref] [PubMed]

Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
[Crossref] [PubMed]

S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, “Evaluation of the monocular depth cue in 3D displays,” Opt. Express 16(26), 21415–21422 (2008).
[Crossref] [PubMed]

S. Park, J. Roh, S. Kim, J. Park, H. Kang, J. Hahn, Y. Jeon, S. Park, and H. Kim, “Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator,” Opt. Express 25(4), 3469–3480 (2017).
[Crossref] [PubMed]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24(12), 13334–13342 (2016).
[Crossref] [PubMed]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
[Crossref] [PubMed]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

K. Matsushima and T. Shimobaba, “Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields,” Opt. Express 17(22), 19662–19673 (2009).
[Crossref] [PubMed]

Proc. SPIE (2)

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

Sci. Rep. (1)

T. Shimobaba, H. Yamanashi, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, N. Masuda, and T. Ito, “In-line digital holographic microscopy using a consumer scanner,” Sci. Rep. 3(1), 2664 (2013).
[Crossref] [PubMed]

Other (1)

H. Urey, S. Holmstrom, U. Baran, K. Aksit, M. K. Hedili, and O. Eides, “MEMS scanners and emerging 3D and interactive Augmented Reality display applications,” in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (2013), pp. 2485–2488.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Our proposed optical see-through head mounted display configuration.
Fig. 2
Fig. 2 Diagram of layer based synthesis hologram.
Fig. 3
Fig. 3 Numerical calculated hologram by changing the liquid lens diameter (a-d) Bolt, (e-h) Gear, and (i-l) Cube.
Fig. 4
Fig. 4 PSNRs comparison by increasing the liquid lens diameter.
Fig. 5
Fig. 5 Simplified schematic of maxwellian view.
Fig. 6
Fig. 6 Field distribution of grid image on our proposed maxwellian view optics, when eye focuses on (b) 50cm, (c) 1m, and (d) 1.7m.
Fig. 7
Fig. 7 Configuration of our proposed dual view optical see-through head mount display.
Fig. 8
Fig. 8 Reconstructed hologram at 1.5m with (a) cube and (b) bolt.
Fig. 9
Fig. 9 Maxwellian view of 'KAIST ' letters formed at 50cm and 1.7m position.
Fig. 10
Fig. 10 Simplified Time multiplexing system schematic.
Fig. 11
Fig. 11 (a) Maxwellian view and (b) hologram snapshots during time multiplexing operation.

Tables (1)

Tables Icon

Table 1 Specifications of SLM and liquid lens

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

 FOV.H=2×arcsin( λ 2p )
 Exit Pupil.H=d×tan( FOV 2 )
 FOV.M=2×arctan( r f ) 
Exit Pupil.M=1.22 λf r
U N ( u,v,z )= n=0 N FFT{ U N (x,y, z n )}  H F (u,v, z n )
H F ( u,v )=exp [jkz 1 λ 2 u 2 λ 2 v 2 ]
z=L 4 (Δx) 2 λ 2 1
PSNR=10log( 255 2 1 mn 0 m 0 n ( I 0 ( m,n ) I r ( m,n )) 2 )

Metrics